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Abstract

Solutions of the angular Teukolsky equation are required to obtain frequency-

domain solutions for perturbations on the Kerr geometry. The analytic behavior of

solutions to the angular Teukolsky equation have been explored in expansions about

the spherical limit, and in the asymptotic oblate limit. However, obtaining the general

behavior in the asymptotic prolate limit has proven difficult. We perform a high

accuracy study of prolate solutions to the angular Teukolsky equation, and use these

to extend our understanding of the analytic behavior of solutions in the asymptotic

prolate limit. We found two categories of prolate solutions. One group of solutions,

which we call non-anomalous solutions, are in agreement with solutions previously

predicted and calculated numerically. The second category of prolate solutions, which

we call anomalous solutions, to the best of our knowledge, are a previously unknown

set of solutions for the prolate case. The existence of the anomalous solutions strongly

affects the transition of the non-anomalous solutions to their asymptotic limit. Based

on our understanding of the anomalous solutions, we have extended the polynomial fit

of the non-anomalous solutions to higher order than any previous numerical studies.

We similarly determined a limited polynomial fit for the anomalous solutions and

explored their basic properties. Our hope is that these solutions will provide clarity

to, and reduce the computational load on, future studies which require solutions to

the angular Teukolsky equation.
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Introduction

Perturbation theory is of great use in mathematical physics. When solving a

complicated problem, one can start with the known solutions to a similar and sim-

pler problem and solve for the correction on the simpler solutions due to a small

perturbation.

In gravitation, this is commonly done by adding a perturbation to the metric

of space-time. One can start with a well-understood metric, gµν , and add a small

perturbation, hµν , such that the full metric of interest is g′µν = gµν+hµν . By expanding

the field equations to first order in hµν , one may derive partial differential wave

equations which are linearized approximations of solutions on g′µν with respect to the

perturbation. The Schwarzschild metric is a relatively simple and well-understood

metric in which we do not account for any angular momentum of a compact object.

For the Schwarzschild metric, perturbation theory can be used to linearize the Einstein

equation and leads to a differential equation which is separable, called the Regge-

Wheeler equation[25]. The Regge-Wheeler equation is a Schrödinger-type equation

for odd-parity perturbations on the Schwarzschild metric. Later, Zerilli[30] extended

this equation to include even-parity perturbations into what is known as the Zerilli

equation. Bardeen and Press[2] derived a single master equation for scalar, electro-

magnetic, and gravitational perturbations on the Schwarzschild metric called the

Bardeen-Press equation.
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While the Schwarzschild solution is a useful approximation for the case of slowly-

rotating black holes, one can expect a typical black hole to have significant angular

momentum and therefore be rotating too quickly to accurately be approximated by

the Schwarzschild metric. Thus a more accurate and general metric to find lineariza-

tions on would include the rotational behavior of black holes. A common choice for

such a metric is the Kerr metric, since it is asymptotically flat. The Kerr metric, is

given as

ds2 =−
(

1− 2Mr

Σ

)
dt2 −

(
4Mar sin2 θ

Σ

)
dtdφ

+
Σ

∆
dr2 + Σdθ2 + sin2 θ

(
r2 + a2 +

2Ma2r sin2 θ

Σ

)
dφ2.

(0.1)

Here Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2, and a = J
M

is the angular momen-

tum per unit mass. Linearizations of the Einstein equation in a Kerr geometry are

generally more complex to solve both analytically and numerically than those of the

Schwarzschild geometry. The first attempt to linearize the Einstein equation for a

Kerr metric which lead to separable equations was performed by Teukolsky[28]. In

Ref. [28], Teukolsky utilized the Newman-Penrose formalism to derive a completely
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separable equation for perturbations on the Kerr metric. This equation,

4πΣT =

[
(r2 + a2)2

∆
− a2 sin2 θ

]
∂2ψ

∂t2
+

4Mar

∆

∂2ψ

∂t∂φ
+

[
a2

∆
− 1

sin2 θ

]
∂2ψ

∂φ2

−∆−s
∂

∂r

(
∆s+1∂ψ

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
− 2s

[
a(r −M)

∆
+
i cos θ

sin2 θ

]
∂ψ

∂φ

− 2s

[
M (r2 − a2)

∆
− r − ia cos θ

]
∂ψ

∂t
+
(
s2 cot2 θ − s

)
ψ,

(0.2)

is known as the Teukolsky master equation. Here T is related to the stress energy

tensor. In the vacuum case, T = 0 and Eq. (0.2) can be separated by making the

substitution ψ = e−iωteimφ sS`m(θ)R(r). The angular and radial components of the

equation are sS`m and R respectively. We refer to sS`me
imφ as the spin-weighted

spheroidal harmonics (SWSHs) and sS`m as the spin-weighted spheroidal function.

The usefulness in Eq. (0.2) is in that this one equation can apply to all fields via

a choice of s. For example, scalar-valued fields use spin s = 0, spin-half fields use

s = ±1
2
, electric fields use values of s = ±1, and gravitational fields use s = ±2. For

gravitational fields with spin s = ±2, ψ is related to components of the Weyl tensor.

For a full description of ψ for values of s, refer to table 1 of Ref. [28].

To solve Eq. (0.2), one typically must solve for solutions with respect to the

mode frequency, ω. Solutions in terms of ω are called frequency-domain solutions.

Most work has been done in the frequency domain since these solutions are generally

easier to work with and are typically more accurate. If necessary, frequency-domain

solutions can always be converted into solutions with respect to the time variable, t,
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by use of Fourier transform.

Arriving at time-domain solutions tends to be more computationally expensive

when converting the frequency-domain solutions into time-domain solutions. To

reduce computational load, there has been some work to directly solve Eq. (0.2)

in the time domain. Krivan, Laguna, Papadopoulos, and Andersson[17] developed

a 2+1 PDE method to solve Eq. (0.2) for time-domain solutions of a point mass

perturbation near a Kerr black hole. Using the same 2+1 PDE method, Lopez-

Aleman, Khanna,and Pullin[20] solved for the gravitational radiation of a particle with

Gaussian mass distribution using time evolution. Nakano, Zlochower, Lousto, and

Campanelli[22] used time-domain evolution methods along with solutions to Eq. (0.2)

to solve for trajectories of intermediate mass-ratio black hole binaries, with q = 1/10,

q = 1/15, and q = 1/100, where q = M1

M2
is the ratio of the masses in a binary system.

In the extreme mass-ratio limit, one assumes that one object’s mass is significantly

smaller than that of the object such that q → 0. One of the earliest uses of Eq. (0.2)

was by Bardeen, Press, and Teukolsky[3] to model the synchrotron radiation of a

charged point mass of extreme mass-ratio moving in a Kerr background for frequency-

domain solutions by treating the point mass as a perturbation in the geometry.

Equation (0.2) includes a long-ranged potential, meaning that the behavior of

the radial equation is determined by the behavior of the potential at spatial infin-

ity. Equation (0.2) is often converted into short ranged forms for certain problems.

Detweiler and Chandrasekhar[12] solved for a short-ranged real-potential transforma-
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tion of Eq. (0.2) in the case that the spin-weight s = −2. Around the same time,

Chandrasekhar[9] derived relations between Eq. (0.2) and the Bardeen-Press equation,

Regge-Wheeler equation, and Zerilli equation. The transformations in Ref. [12] were

the precursor to work by Sasaki and Nakamura[26] to develop the Sasaki-Nakamura-

Teukolsky formalism to help convert between general short-ranged field equations and

Eq. (0.2). Sasaki and Nakamura used this formalism to compute frequency-domain so-

lutions for gravitational radiation when using the perturbation of a point-mass falling

into a Kerr black hole from spatial infinity.

Hughes[16] used Eq. (0.2) with the Sasaki-Nakamura-Teukolsky formalism to nu-

merically calculate the change in the energy, angular momentum, and Carter constant

of a non-equatorial orbiting point mass perturbation near a Kerr black hole. Hughes

was able to calculate the energy and angular momentum radiated to infinity. Similar

works using Eq. (0.2) to solve for gravitational radiation have been of great interest as

of late due to their relevance in the interpretation of gravitational wave observations

from LIGO, VIRGO, and eventually LISA.

Equation (0.2) is also commonly used in the study of modes of Kerr. These modes

are fundamental resonances on the space-time and are defined by their boundary

conditions. For a Kerr geometry, these boundaries are the event horizon of the black

hole and spatial infinity. For many situations, we want to find solutions which do not

allow waves to emit from the black hole nor to enter the system at spatial infinity.

The modes which satisfy these boundary conditions are called quasi-normal modes

xix



(QNMs). In the case of gravitational radiation from compact objects like black holes,

the QNMs that are present in the ringdown signal allow us to determine properties

of the source such as angular momentum and mass and have already been used with

recent gravitational wave observations[1]. One must solve for QNMs of Kerr black

holes by simultaneously solving the radial and angular parts of Eq. (0.2).

Ferrari and Mashhoon[13] made one of the earliest attempts to approximate ana-

lytic solutions for QNMs of slowly-rotating Kerr black holes by finding bound states

of the inverted Kerr potential for Eq. (0.2). Brink[21] also made progress towards an-

alytic solutions for QNMs in the Schwarzschild limit. While there has been significant

work in solving QNMs for non-rotating black holes by use of Green’s functions[23, 27],

no such method has of yet been generalized for rotating black holes.

Leaver’s method[19] is one of the earliest numerical methods for use with Eq. (0.2)

to solve for Kerr QNMs, and has become one of the most broadly used algorithms

available to solve Eq. (0.2) numerically. Leaver derived this method by converting the

radial and angular parts of Eq. (0.2) into infinite continued fractions, which Leaver

truncated at a finite depth and solved. Onozawa[24] used Leaver’s method to solve for

highly-damped modes of Kerr. Berti, Cardoso, and Casals[4] used Leaver’s method

with their own shooting method to compute slowly-damped QNMs to high precision.

Of particular note for the work in this paper, Cook and Zalutskiy[11] developed a

spectral decomposition method for solving the angular component of Eq. (0.2) while

using Leaver’s method to solve for the radial component in order to find QNMs of

xx



Kerr.

Total transmission modes (TTMs) are similar to QNMs except they swap one of

the boundary conditions. Left TTMs (TTMLs) allow the waveform to travel in from

spatial infinity and right TTMs (TTMRs) allow outgoing waves at the black hole

event horizon. This naming scheme assumes a picture with the black hole situated to

the left and spatial infinity to the right. Cook and Zalutskiy’s spectral method was

used by Cook, Annichiarico, and Vickers[10] to solve Eq. (0.2) for TTMRs, TTMLs,

and QNMs.

By separating out the angular component of Eq. (0.2) and making the substitution

cos θ=x, one is able to express the angular Teukolsky equation as

[(
1− x2

)
sS`m,x

]
x

+

[
(cx)2 − 2scx+ s+ sA`m −

(m+ sx)2

1− x2

]
sS`m = 0. (0.3)

sA`m is the angular separation constant, which is treated as the eigenvalue when

solving Eq. (0.3) with the eigenfunction being sS`m. For simplicity, we have set

aω = c. We refer to c as the oblateness parameter. When s = 0 and c is purely

real or imaginary, Eq. (0.3) is obtained from separating the Laplacian in spheroidal

coordinates and c specifies the oblateness or prolateness of the coordinates. For

Eq. (0.3), values of c that are purely real are referred to as oblate, and values such

that ic ∈ < are prolate. In general the value of c is complex. Due to greater simplicity,

most works to arrive at analytic solutions for Eq. (0.3) are focused on the purely oblate

or purely prolate cases.
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We refer to m as the azimuthal index. There are countably infinite solutions to

Eq. (0.3) for any given combination of m, s, and c, and we label these solutions

with the index `—referred to as the multipole number. For generalized sS`m, the

minimum multipole number `min = max(|m|, |s|). We often define another index

L = `−max(|m|, |s|) so that Lmin = 0 for all combinations of m and s.

In the case that c = 0, the SWSHs reduce to the well-known spin-weighted spher-

ical harmonics, sY`m. For s = c = 0, Eq. (0.3) becomes the equation for scalar

spherical harmonics commonly used in electrostatics and quantum solutions for the

state of an atom.

The SWSHs also form a natural basis for several problems outside of the field of

gravitation. Figueiredo[14] used the s = 1 SWSHs to solve the two-center electron

problem. Larsson, Levitina, and Brändas[18] used the prolate s = 0 SWSHs to solve

various applied problems in signal processing.

A power series expansion in c for sA`m has been solved analytically by Breuer,

Ryan, and Waller[7] in the small c limit. They also derived an analytic power series

expansion in c in the asymptotic limit (c� 1) for the oblate case. Minor corrections

to the oblate power-series solution were added by Casals and Ottewill[8].

An analytic power series for the prolate asymptotic behavior in powers of c of

sA`m has only been solved in the case of s = 0 by Flammer[15]. In the s = −2

case for prolate eigenvalues, Ref. [4] numerically solved for spin-weighted spheroidal

functions. Ref. [10] found solutions to Eq. (0.3) in the prolate asymptotic limit for
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the case of m = 0 and s = 2. In this case, Ref. [10] fit a high-accuracy power-series

expansion in powers of |c|. In general, solutions for s 6= 0 in the asymptotic regime

continue to be unsolved.

As a follow-up to Ref. [10], Vickers[29] performed work to arrive at an analytic

power-series expansion in c for generalized prolate sA`m using the same spectral de-

composition method as Ref. [11] to generate numerical solutions on which fits are

based. The work in this paper is a direct expansion of Ref. [29] in which we hope to

extend the power-series expansion for sA`m for the general asymptotic prolate case.

Arriving at this power-series expansion will hopefully be useful for future attempts to

solve Eqs. (0.3) and (0.2). We have also found information related the odd behavior

found by Ref. [4] and we hope it will reveal a possible reason for the difficulty in

finding an analytic solution to the Eq. (0.3).

Chapter 1 of this thesis will be an overview of the numerical methods used in this

work as well as the basic analytic properties of the spin-weighed spheroidal functions

and their eigenvalues. Chapter 2 will be a qualitative analysis of our survey of prolate

solutions for sA`m and sS`m as well as an initial categorization of the data. In Ch. 3,

we will compare our numerical solutions to Eq. (0.3) with the analytic solutions for the

s = 0 case derived in Ref. [15]. Chapter 4 will be an overview of our fitting methods as

well as where we will produce numerical fits for one category of the prolate solutions.

In Ch. 5, we will explore properties of, and numerically fit, a secondary category of

prolate solutions. Chapter 6 will be our concluding remarks on the results in this

xxiii



study.
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Chapter 1: Numerically Solving for the Spin-Weighted

Spheroidal Functions

In this chapter, we will give an overview of the spin-weighted spheroidal func-

tions. This will include their basic analytic properties and the numerical methods to

construct high-accuracy numerical solutions. We will cover our data generation and

organization techniques for producing solutions to Eq. (0.3) in the prolate asymptotic

limit. We do this so that we may numerically fit the separation constant, sA`m. In

doing so, we make use of some of the known properties of the spin-weighted spheroidal

functions and their associated eigenvalues.

The spin-weighted spheroidal functions, sS`m, and the angular separation constant,

sA`m, are treated as the eigenfunction and eigenvalue of Eq. (0.3) respectively. The

values of m and s appear in Eq. (0.3), but the multipole number, `, does not. The

multipole number is only used to label the eigensolutions of Eq. (0.3) for a particular

combination of m and s. sS`m and sA`m are purely real in the s = 0 or oblate cases,

sA`m is also purely real in the m = 0 case, and both are generally complex otherwise.
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The multipole number satisfies ` ≥ max(|m|, |s|) and `min ≡ max(|m|, |s|). Com-

mon practice is to define L = ` − max(|m|, |s|). This definition ensures that the

minimum value of L for any given combination of m and s is zero. The number of

zero crossings of the oblate sS`m and for prolate 0S`m is known to be equal to L.

The real component of prolate sS`m will have L zero-crossings plus additional real

zero-crossings dependent upon the value of |s|.

The values of sA`m have some symmetries, such that

sA`m(c) = sA
∗
`(−m)(−c∗), (1.1)

and

−sA`m(c) = sA`m(c) + 2s. (1.2)

Equations (1.1) and (1.2) are useful since they allow us to reduce the numerical work

when calculating the values of sA`m. By solving Eq. (0.3) for any given values of m

and s, one can immediately recover solutions for m→ −m and s→ −s.

In the spherical limit (c → 0), sS`m reduces to sY`m, meaning the eigenvalues of

the spin-weighted spheroidal functions reduce to the eigenvalues of the spin-weighted

2



spherical harmonics;

sA`m(c = 0) = `(`+ 1)− s(s+ 1). (1.3)

For the oblate asymptotic limit, Breuer, Ryan, and Waller[7] analytically derived

a power-series expansion for sA`m which is

sA`m = −c2 + 2sq`mc−
1

2

[
sq

2
`m −m2 + 2s+ 1

]
+

1

c
A1 +

1

c2
A2 +O

(
c−3
)
, (1.4)

where

A1 = −1

8

[
sq

3
`m −m2

sq`m + sq`m − s2( sq`m +m)
]
, (1.5)

and

A2 = − 1

64

[
5 sq

4
`m −

(
6m2 − 10

)
sq

2
`m +m4 − 2m2 − 4s2

(
sq

2
`m −m2 − 1

)
+ 1
]
.

(1.6)

Using the terms s`m = max (|m|, |s|) + 1
2

(|m+ s| − |m− s|) + s and z0 =
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1
2

(
1 + (−1)`− s`m

)
, the value of sq`m was derived by Casals and Ottwill[8]1 to be

sq`m = L+
|m+ s|+ |m− s|

2
+ 1 + z0 if ` ≥ max ( s`m, −s`m), (1.7)

or

sq`m = 2L+ |m∓ s| ∓ s+ 1 if ` < ±s`m. (1.8)

Flammer[15] derived the first asymptotic power-series expansion for prolate 0A`m

in powers of |c|. By making the substitution 0S`m =
√

1− x2

2|c| u`m in the prolate

asymptotic limit, Flammer noted that Eq. (0.3) transformed into a differential form

similar to the equation for the parabolic cylinder functions

d2Dr

dx2
+

(
r +

1

2
− 1

4
x2
)
Dr = 0. (1.9)

Solutions to Eq. (1.9) have r zeros between the endpoints. Showing that the number

of zeros of 0S`m is constant between the spherical limit and asymptotic limit, and

therefore r = L, Flammer showed that the power-series solution for the prolate values

1The equation for s`m is in the original form in which it was published, but can be simplified to
read s`m = |m + s|+ s.
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of 0A`m is

0A`m,flammer =|c| (2L+ 1)−
(
2L2 + 2L+ 3− 4m2

)
2−2

− 1

|c|
(2L+ 1)

(
L2 + L+ 3− 8m2

)
2−4 − 1

|c|2
[
5
(
L4 + 2L3 + 7L+ 3

)
− 48m2

(
2L2 + 2L+ 1

) ]
2−6 +O

(
|c|−3

)
.

(1.10)

In the prolate asymptotic limit for general s, Berti, Cardoso, and Casals[5] deduced

the leading-order behavior for some sA`m. For general s, they separated sS`m into

inner and outer regions, sS
inner
`m and sS

outer
`m respectively. Inner solutions are defined

as solutions for the region far from the endpoints of x = ±1 and are solved almost

identically to the method used by Flammer. Note that the transformation used in

Ref. [15] assumes that sS`m go to zero at the endpoints. Using arguments similar

to those in Ref. [15], Berti, Cardoso, and Casals determined that the number of

zero crossings of the real component of sS
inner
`m is equal to L and must fall in the

region |x| <
√

2L+1
|c| . Outer solutions are solutions of sS`m for 1/

√
|c| � |x| < 1.

Berti, Cardoso, and Yoshida[4] calculated the number of zero crossings of the real

component of sS
outer
`m by utilizing a WKB approximation in Ref. [8] near x = ±1 and
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matching in the overlapping regions of sS
inner
`m and sS

outer
`m to show that

sS
outer,±1
`m =(−i)s2L+1/2(±

√
2|c|)Le−3|c|/2(1− x2)−1/4xL

× (1 +
√

1− x2)−L−1/2(x− i
√

1− x2)−se|c|
√
1−x2 .

(1.11)

Finding the zeros of Eq. (1.11) is then straightforward and depends solely upon s. In

general, there are no outer zero-crossings for s = 0,±1. For ±2S`m, there are two real

zero crossings near x = ± 1√
2
, and there are generally real zero-crossings in the outer

region for |s| ≥ 2.

Using the information from the inner solutions, Berti, Cardoso, and Yoshida[4]

determined that in the prolate asymptotic limit,

sA`m = (2L+ 1)|c|+O
(
|c|0
)
. (1.12)

Equation (1.12) agrees with previously known numeric solutions to Eq. (0.3), which

were found for limited cases[4, 10]. The terms of constant order and smaller in |c|

are not known for the prolate asymptotic case, and these terms are what we will be

determining in this work with our numerical solutions to Eq. (0.3).
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Our method of numerically solving Eq. (0.3) is the same spectral-decomposition

approach utilized in Ref. [11]. When using spectral decomposition, one chooses a set

of basis functions that span the space of desired solutions. One can then substitute

the linear combination of basis functions into the equation being solved. The goal of

this substitution is typically to write out some recursion relation with respect to the

coefficients of the linear combination. This allows the equation being solved to be

converted into a matrix eigenvalue problem which is solved numerically.

A spectral method offers many advantages in our case that are not offered by other

algorithms. The spectral method used in Ref. [11] offers a high degree of accuracy

and the spectral method will generate multiple eigensolutions each time we solve a

given matrix. This makes the spectral approach very computationally efficient for the

amount of data we generated.

In the case of Eq. (0.3), Cook and Zalutskiy[11] chose to use the spin-weighted

spherical harmonics as the basis functions so that

sS`me
imφ =

∑
`′

C`′`m sY`′m. (1.13)
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The functions sY`m form a complete basis, so we can be sure that sS`m is spanned by

sY`m.

Plugging Eq. (1.13) into Eq. (0.3), Ref. [11] then eliminates the x dependence by

use of the recursions relation[6] which satisfies

xsY`m = Fs`m sY(`+1)m + Gs`m sY(`−1)m +Hs`m sY`m. (1.14)

where

Fs`m =

√
((`+ 1)2 −m2)

(2`+ 3)(2`+ 1)

((`+ 1)2 − s2)
(`+ 1)2

,

Gs`m =

√
(`2 −m2)

(4`2 − 1)

(`2 − s2)
`2

if ` 6= 0, 0 otherwise, and

Hs`m = − ms

`(`+ 1)
if ` 6= 0, 0 otherwise.

(1.15)

After using Eq. (1.14), Ref. [11] was then able to derive a five-term recursion relation
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on C`′`m as

0 =− c2As(`′−2)mC(`′−2)`m −
[
c2Ds(`′−1)m − 2csFs(`′−1)m

]
C(`′−1)`m

+
[
`
′
(`

′
+ 1)− s(s+ 1)− c2Bs`′m + 2csHs`′m − sA`m

]
C`′`m

−
[
c2Es(`′+1)m − 2csGs(`′+1)m

]
C(`′+1)`m − c2Cs(`′+2)mC(`′+2)`m.

(1.16)

Equation (1.16) makes use of the following coefficients:

As`m = Fs`mFs(`+1)m,

Bs`m = Fs`mGs(`+1)m + Fs(`−1)mFs`m +H2
s`m,

Cs`m = Gs`mGs(`−1)m,

Ds`m = Fs`m(Hs`m +Hs(`+1)m),

Es`m = Gs`m(Hs(`−1)m +Hs`m).

(1.17)

This recursion relation represents an infinite-dimensional pentadiagonal matrix

eigenvalue problem where sA`m is the eigenvalue. Notice that any given matrix holds

constant the values of m, s, and c, and the set of eigensolutions is indexed by `. The

eigenvectors will be the coefficients C`′`m which we combine with Eq. (1.13) to yield

sS`m for a given `.
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To numerically solve this eigenvalue problem, we truncate the matrix at size n×n,

and the matrix will span values of 0 ≤ `′ − max(|m|, |s|) ≤ n − 1. The magnitudes

of C`′`m decrease exponentially with increasing `′, for `′ that are large enough to be

in the convergent regime. This ensures that for a particular value of ` and large

enough matrix size, contributions to sS`m from sY`′m will be negligible for values of

`′ ≥ n + max(|m|, |s|). Selecting a range of solutions we were interested in such

that `min ≤ ` ≤ `max, we confirmed the numerical accuracy of these solutions by

checking the last two coefficients, C(n+max(|m|,|s|)−1)`m and C(n+max(|m|,|s|)−2)`m, for all

` of interest. If any coefficient were found to be larger than an error threshold of

ε ≥ 10−24, the matrix size was expanded and the calculation was repeated until the

error was sufficiently small.

We used this algorithm in the asymptotic regime along the negative imaginary

axis in c. For each combination of m and s, we solved in the cases of ic = 10δ for

−5 ≤ δ ≤ 5 in steps of ∆δ = 1
1000

.

We first solved Eq. (0.3) near the spherical limit for the particular values of ic =

10−5 and ic = 10−4.999. We used Eq. (1.3) to determine the expected eigenvalues
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in the spherical limit based on L. This expectation was matched to our numerical

spherical limit solutions which allowed us to label sequences of solutions by values of

L. Starting with our two known points in each sequence, we used a linear prediction

algorithm to match solutions to Eq. (0.3) for ic > 10−4.999 with the spherical limit

solutions to form sequences as ic increased. Starting sequences near the spherical

limit in this way ensured that our labels of L were consistent with the spherical limit.
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Chapter 2: Qualitative Analysis of Eigenvalue Solutions

After generating sequences of solutions, we compared our data with expectation.

Equations (1.1) and (1.2) ensure that we need only produce data for the cases of

m ≥ 0 and s ≥ 0; however, we generated solutions for enough combinations of

m < 0 and s < 0 to ensure our numerical fits obeyed these symmetries. In total, we

generated sequences of solutions which were categorized for all integer combinations

of −10 ≤ m ≤ 20, −10 ≤ s ≤ 20, and L ≤ 151. The sequences contained triplets of

(c, sA`m, sS`m) for 10−5 ≤ ic ≤ 105.

We want to confirm the behavior stated in Eq. (1.12), which expects a linear

leading-order behavior for the real component of sA`m. Eigensolutions which agree

with Eq. (1.12) are also predicted to have sS`m with a certain number of real zero-

crossings as stated in Ref. [5] for the inner and outer solutions. Namely, we ex-

pect L real zero crossings of sS`m in the inner region of cos−1
(√

2L+1
|c|

)
< θ <

cos−1
(
−
√

2L+1
|c|

)
, and a number of real zero crossing determined by Eq. (1.11) for

the outer regions such that |θ − π
2
| � cos−1

(
|c|−1/2

)
. Specifically, we expect that

1In some cases, values of L > 15 were also checked.
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the s = 0 and s = ±1 cases have no zero-crossings in the outer region of the real

components, the s = ±2 cases have two real zero-crossings at θ = cos−1(±2−1/2), and

so on. The behaviors of the symmetries from Eqs. (1.1) and (1.2) are known exactly,

and it is straightforward to show each.
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Figure 2.1: The real and imaginary components of the first 8 sequences of 2A`3. The
plot of the real components shows linear leading order behavior, as anticipated by
Eq. (1.12). The imaginary component follows a leading-order behavior of |c|−1.

Figure 2.1 shows the behavior of the real and imaginary components of a sample
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collection of eigenvalue sequences, 2A`3. Notice that we do see the expected linear

leading order behavior for the real component. A preliminary analysis showed that

the real components of the eigenvalues do agree with Eq. (1.12) in this case. The

imaginary component has dominant asymptotic behavior of order |c|−1.
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Figure 2.2: Real and imaginary components of 1S32(θ) at |c| = 100. This plot confirms
that there are L = 1 zero-crossings in the real components of the eigenfunction near
θ = π/2.
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Figure 2.2 shows the real and imaginary components of 1S`2 for L = 1 at ic = 100.

As can be seen, the zero-crossings of the real component do indeed occur near θ = π
2
,

and the number of real zero-crossings in Fig. 2.2 equals L. This is representative of

most of the asymptotic eigenvector solutions we found; we will discuss the exceptions

to this rule later in this chapter.
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Figure 2.3: The real component of 2S33(θ) at |c| = 100 with an emphasis on the
real zero-crossings in the outer region. For s = ±2, one expects to see two real
zero-crossings near the points of θ = cos−1(±2−1/2) ≈ 0.785 and 2.36.
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Figure 2.4: The real component of 3S54(θ) at |c| = 100 with an emphasis on the
real zero-crossings in the outer region. For s = ±3, one expects to see two real
zero-crossings near the points of θ = cos−1(±5−1/2) ≈ 1.11 and 2.03.
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Figure 2.2 shows no real zero-crossings in the outer region, as predicted for all

s = ±1 cases by Ref. [5]. Figure 2.3 shows the real zero-crossings for 2S`3 for L = 0

at ic = 100. As expected for the s = ±2 cases by Ref. [5], we found two real

zero-crossings near θ = cos−1(2−1/2) ≈ 0.785 and 2.36. Figure 2.4 shows the real

zero-crossings of 3S`4 for L = 1 at ic = 100: one crossing from the inner solution

near π
2
, and two crossings from the outer solution which were expected to be located

at approximately θ = cos−1(± 1√
5
) ≈ 1.11 and 2.03. These crossings become less

pronounced for greater magnitudes of c. For the eigenvector shown in Fig. 2.3, these

crossings become indistinguishable from the numerical error around ic ≈ 110. In

general, our eigenvalue and eigenvector solutions agree with Ref. [5] in most cases.

Exceptions are outlined later in this chapter.
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Figure 2.5: The residues of Re(1A`2− 1A`(−2)) and Im(1A`2 + 1A`(−2)). Both residues
are exactly zero, and this demonstrates agreement of our data with Eq. (1.1) for

2A`(±2).
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Figure 2.6: The residues of Re(1A`2− −1A`2)+2 and Im(1A`2− −1A`2). Both residues
go to zero to machine precisions, demonstrating agreement of our data with Eq. (1.2)
for ±2A`2.

Next, we show that our data obey the two symmetry properties of sA`m. Figure 2.5

is a representative plot showing the residue, or the difference, of Re
(
1A`2 − 1A`(−2)

)
and Im

(
1A`2 + 1A`(−2))

)
. As expected, the residues are exactly zero which indi-

cates 1A`2 and 1A`(−2) are complex conjugates of each other. This confirms that our

data agrees with Eq. (1.1). Similarly, Fig. 2.6 shows Re (1A`2 − −1A`2) + 2s and
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Im
(
1A`2 − −1A`2)

)
. The residues of each go to zero out to machine precision. Fig-

ure 2.6 demonstrates agreement of our data with Eq. (1.2.) These two plots represent

the symmetries for a single combination of m and s, but the behavior in Figs. 2.5 and

2.6 is demonstrative of the behavior of all eigenvalues that we generated.
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Figure 2.7: The eigenvalue sequences for Re(2A`2) in the asymptotic regime. Note
that the L = 1 eigenvalue sequence has an asymptotic behavior that is quadratic
which disagrees with Eq. (1.12).

It was in the observational analysis of our generated solutions that we first no-

ticed odd behaviors in particular eigenvalue solutions, as shown in Fig. 2.7. In this

figure, the eigenvalue sequence of 2A`2 for L = 1 does not exhibit linear leading order

behavior, but rather quadratic behavior in the asymptotic regime.
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Figure 2.8: Close-up of Fig. 2.7 in the non-asymptotic regime for Re(2A`2). Note the
deflection-like event which occurs between the sequences of L = 0 and L = 1 near
ic ≈ 3. Also note the odd wobble-like behavior shown as the L = 1 sequence passes
near the sequences of L > 1.

Figure 2.8 shows a close up view of the non-asymptotic regime of 2A`2, also shown

in Fig. 2.7. Notice the deflection-like event that appears to happen between the

eigenvalue sequences of L = 0 and L = 1. Sequence L = 1 behaves quadratically

in the asymptotic regime while L = 0 agrees with Eq. (1.12). Berti, Cardoso, and

Casals[4] also calculated the eigensolutions for L = 0 in this case and found the same

bending behavior we did, shown in Fig. 3 of Ref. [4]. We agree with the conclusion

in Ref. [4] that this bend is a smooth deformation and part of a continuous sequence.
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Figure 2.8 helps to illuminate the nature of the bending behavior by showing the

deflection-like event with the L = 1 sequence.
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Figure 2.9: The eigenvalue sequences for Im(2A`2) in the asymptotic regime, corre-
sponding to the real components shown in Fig. 2.7. Note that the L = 1 eigenvalue
sequence has an asymptotic behavior that is linear while all other sequences are of
order |c|−1.
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Figure 2.10: Close-up of 2.9 in the non-asymptotic regime for Im(2A`2).Note the odd
wobble-like behavior shown as the L = 1 sequence passes near the sequences of L > 1.

The behavior of the imaginary component is also different for 2A`2 in the case of

L = 1. Figures 2.9 and 2.10 show the imaginary components of the same eigenvalue

sequences shown in Fig. 2.7. Notice how the L = 1 sequence is demonstrating linear

leading order behavior for the imaginary component as opposed to the |c|−1 behavior

of the other sequences. Also notice how there is a strange wobbling-like behavior each

time the L = 1 line comes near another line. A clear example of this is near ic ≈ 5

in Figs. 2.8 and 2.10.
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Figure 2.11: Several anomalous lines of various s and L for m = 2. Note that the real
component of each eigenvalue sequences has quadratic asymptotic behavior, and all
of these solutions may be grouped together based on this asymptotic behavior.

Other eigenvalue sequences were observed to exhibit quadratic leading order real

behavior asymptotically for several combinations of m, s, and L. Each combination

has a particular way of deflecting with the other sequences. We refer to these eigen-

value sequences that do not exhibit real linear leading order behavior in the asymp-

totic regime as “anomalous”. We define an anomalous line as any prolate eigenvalue

sequence which can be asymptotically fit to leading order as

Re(sA`m,anom) = |c|2 +O(|c|0). (2.1)
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Figure 2.12: The real and imaginary components of 4A`2 in the non-asymptotic
regime. Notice that the L = 5 eigenvalue sequence eventually demonstrates the
quadratic leading-order behavior making it an anomalous eigenvalue sequence. Note
the deflection-like behaviors which appear for several non-anomalous eigenvalue se-
quences as well as the anomalous eigenvalue sequence.
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Figure 2.13: The real and imaginary components of 3A`3 in the non-asymptotic
regime. Here, the L = 0 eigenvalue sequence is anomalous, and we note that this
sequence does not exhibit any deflection-like behavior.
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Figure 2.14: The real and imaginary components of 12A`9 in the non-asymptotic
regime. Here, the L = 0, 1, and 5 eigenvalue sequences are anomalous. There is a
mixture of different deflection like behaviors present for this combination of m and s.
The L = 0 and L = 1 sequences do not deflect at all while the L = 5 sequence does
deflect.
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Figure 2.12 shows that for m = 2 and s = 4 several non-anomalous eigenvalue

sequences deflect off of each other until the L = 5 anomalous eigenvalue sequence

changes to its asymptotic behavior. Figure 2.13 shows that anomalous line 3A`3

for L = 0 does not deflect at all before going on to show its asymptotic behavior.

Figure 2.14 shows that for the combination of m = 9 and s = 12, there were three

anomalous lines that we found—L = 0 and L = 1 did not deflect while L = 5

did deflect once. These plots together demonstrate the range of deflection behaviors

present in the overall data.
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Figure 2.15: The real and imaginary components of the eigenfunction 2S`2(θ) for
L = 1, which is an anomalous sequence. The eigenfunction is evaluated for |c| = 100.
Notice that this sequence does not exhibit the expected behavior for the inner nor
outer regions given this combination of L and s. Also note that this eigenfunction
does not go to zero at both endpoints.
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Figure 2.16: The real and imaginary components of the eigenfunction 3S`3(θ) for
L = 0, which is an anomalous sequence. The eigenfunction is evaluated for |c| = 100.
Notice that this sequence does not exhibit the expected behavior for the inner nor
outer regions given this combination of L and s. Also note that this eigenfunction
does not go to zero at both endpoints.

33



Figures 2.15 and 2.16 are eigenvector solutions for 2S`2 for L = 1 and 3S`3 for L = 0

respectively at ic = 100 and both are anomalous. As can be seen in both figures, these

anomalous lines do not have a number of real zero-crossings which agree with the inner

and outer solutions outlined in Ref. [5] and Ref. [4]. For anomalous lines, the number

of zero-crossings increases approximately linearly with |c| in the asymptotic regime so

that they do not approach any fixed number of real zero-crossings. Also note how the

anomalous eigenvectors do not go to zero at the endpoints, which was an assumption

in the derivation of Eq. (1.12). While there are anomalous eigenvalue sequences which

do go to zero at the end points, this assumption may partially account for why the

anomalous eigenvalue sequences have not been previously predicted.
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Figure 2.17: The real and imaginary components of the eigenfunction 12S`9(θ) for
L = 0, which is an anomalous sequence. The eigenfunction is evaluated for |c| = 100.
Note that this anomalous eigenvector solution does go to zero at both endpoints.
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Figure 2.18: The real and imaginary components of the eigenfunction 12S`9(θ) for
L = 5, which is an anomalous sequence. The eigenfunction is evaluated for |c| = 100.
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Figures 2.17 and 2.18 show how having real zero-crossings near the endpoints is

not consistent across all anomalous eigenvector lines.
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Figure 2.19: Log-log plot of the residue for Re(−4A`2) after subtracting the lead-
ing-order analytic asymptotic behavior given in Eq. (1.12). The eigenvalue sequence
of L = 5 is anomalous. This plot shows three distinct categories of sequences. The
sequences with L < 5 are of constant order in |c|, which agrees with Eq. (1.12). The
L = 5 residue is of order |c|2, which is expected for any anomalous eigenvalue se-
quence. Note the residues for L > 5 are of linear order in |c|. This indicates that the
asymptotic behavior of these sequences is still linear in |c| but does not agree with
the leading-order analytic asymptotic behavior given in Eq. (1.12).

Other odd behaviors appear for the non-anomalous lines that share a combination

of m and s with at least one anomalous line. For an anomalous line present at L = l,

it turns out that the eigenvalue sequences of L > l still show linear leading-order real

37



behavior but do not agree with Eq. (1.12). This interaction is best demonstrated in

Fig. 2.19. For a non-anomalous line, we expect the residue of sA`m − |c|(2L + 1) =

O(|c|0), which would correlate to a flat line in the log-log plot. The L = 5 eigenvalue

sequence is the anomalous line for m = 2 s = 4 shown in Fig. 2.19. For eigenvalues

of L < 5, the leading order behaviors of the residues are constant. For L > 5, the

residues show linear leading order behavior, in disagreement with Eq. (1.12).

Not obvious in Fig. 2.19, the eigenvalue sequence of L = 6 actually has a leading

order behavior limic→∞ 4A10,2 = 11|c| which is the expected behavior for L = 5.

Likewise, L = 7 exhibits the expected behavior of the L = 6 sequence and so on for

all higher values of L for this combination of m and s.
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Figure 2.20: The real and imaginary components of the non-anomalous eigenfunction

3S`3(θ) with L = 1 at ic = 100. Based on the predictions from Ref. [4], one would
expect one zero-crossing of the real component in the inner region since L = 1. Note
that there are no real zero-crossings in the inner region; one less than expected. Recall
that the corresponding L = 0 sequence is anomalous.
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Figure 2.21: The real and imaginary components of the non-anomalous eigenfunction

2S`2(θ) for L = 10 at ic = 100. Based on the predictions from Ref. [4], one would
expect L = 10 zero-crossing of the real component in the inner region. Note that
there are nine real zero-crossings of the inner region; one less than expected. Recall
that the corresponding L = 1 sequence is anomalous. Along with Fig. 2.20, this
demonstrates a shift in the observed eigenfunction zero-crossings due to the existence
of anomalous sequences of same m and s.

40



Figures 2.20 and 2.21 show the non-anomalous eigenvector solutions for the asymp-

totic cases of 3S`3 for L = 1 and 2S`2 for L = 10 at ic = 100. Recall from Fig. 2.13

that L = 0 of 3S`3 is an anomalous eigenvalue line. L = 1 of 3S`3 is expected to have

one real eigenvector zero-crossing, but notice the number of zero-crossings is actually

0. Similarly for 2S`2, L = 1 is anomalous, and the number of real zero-crossings of

L = 10 is one less than expected. In all cases, the number of real zero-crossings

appears to be less than expected in the asymptotic limit due to the presence of

anomalous eigenvector solutions of lower L.

L is merely an arbitrary label assigned based on an eigenvalue’s behavior in the

spherical limit. The shifting behaviors noted above show that it would be useful to

assign a new index other than L in the asymptotic limit. This lead us to define

L′ = L − sN`m. sN`m is the number of anomalous eigenvalues such that for l < `,

sAlm is anomalous. It is then true that for all non-anomalous eigenvalue sequences,

sA`m = |c| (2L′ + 1) +O
(
|c|0
)
. (2.2)

It is also true that the number of real zero-crossings for non-anomalous eigenvectors
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in the inner region is equal to L′.

It is very clear that we will have to separately fit the anomalous and non-anomalous

eigenvalue sequences. We will first fit the non-anomalous solutions as those will most-

closely resemble the s = 0 solutions and Eq. (1.12). We will then explore the fits for

the anomalous eigenvalue sequences.
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Chapter 3: Confirming Sequences of Solutions for 0A`m
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Figure 3.1: Residues of our numerical solutions for 0A`2 minus the analytic expectation
of Eq. (1.10) truncated at order |c|−2. The residue of the L = 0 sequence reaches
machine precision while the residues for L > 0 are of order |c|−2.

Before exploring the fitting of sA`m for |s| > 0, we first wanted to confirm our nu-

merical results with the known analytic solution for 0A`m, which Flammer[15] derived

and we display in Eq. (1.10). Figure 3.1 shows the residue of subtracting Eq. (1.10)

truncated at order |c|−2 from our numerical results for 0A`2. The L = 0 residue

reached machine precision while the L > 0 residues had slopes of -2 in the log-log

plot, indicating a remaining residue of order |c|−2. This shows a disagreement between
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our numerical data and Eq. (1.10). A preliminary analysis of this residue behavior

appears to go as 0A`m − 0A`m,F lamm = − 40L2

64|c|2 +O(|c|−3).

At this point, we chose to analytically check Flammer’s original solution from

Ref. [15] to ensure the accuracy of our numerical results. Starting with the Eq. (0.3)

for s = 0, Flammer makes the substitution

0S`m =
(
1− η2

)1/2
u`m, (3.1)

where η = 2|c|−1/2x. This substitution yields

(
2|c| − x2

) d2u`m
dx2

− 2 (m+ 1)x
du`m
dx

+

[
0A`m −m2 −m− 1

2
|c|x2

]
u`m = 0. (3.2)

In the asymptotic limit, |c| � x and Eq. (3.2) reduces to

d2u`m
dx2

+

(
1

2|c| 0
A`m −

1

4
x2
)
u`m = 0. (3.3)

Equation (3.3) is a differential equation with a similar form to the equation defining

the parabolic cylinder functions Dr, shown in Eq. (1.9). Thus, the number of zero-

crossings in this limit are determined by the parabolic cylinder functions, which have
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r zero crossings.

For c = 0, Eq. (0.3) reduces to the differential equation for sY`m, which has `−|m|

zero crossings. Flammer notes that the number of zero-crossings of 0S`m must remain

the same for all values of c. With this, he was able to use Eqs. (3.3) and (1.9) to

conclude in the asymptotic limit 0A`m = (2r + 1)|c| and therefore

lim
c→±i∞

0A`m = |c| (2`− 2|m|+ 1) = |c| (2L+ 1) . (3.4)

Flammer then expands u`m in terms of the parabolic cylinder functions so

u`m =
∞∑

r=−∞

hLrDL+r. (3.5)

Plugging Eq. (3.5) into Eq. (3.2) for even r, Flammer derives the recursion relation

0 =− hLr−4 + 4mhLr−2 +

[
4 0A`m − 8c

(
L+ r +

1

2

)
− 4m2+

2(L+ r)2 + 2(L+ r) + 3

]
hLr − 4m(L+ r + 1)(L+ r + 2)hLr+2−

(L+ r + 1)(L+ r + 2)(L+ r + 3)(L+ r + 4)hLr+4.

(3.6)

We used Eqs. (3.4) and (3.6) to solve for hLr by the method of successive approxi-
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mation after noting that

hL±(2r+2)/h
L
0 = O(|c|−

1
2
r−1), and hL±(2r+4)/h

L
0 = O(|c|−

1
2
r−1). (3.7)

There are a countably infinite number of hLr functions each with a countably infinite

number of terms. We only solved the functions needed to a depth necessary to

reproduce the result from Ref. [15] for Eq. (1.10) out to order |c|−2. Our solutions for
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the values of hLr were consistent with those found by Flammer, and are

hL2
hL0

=2−2m

(
|c|−1 −

(
L2 − 25L− 36

)
2−5|c|−2

−
[
6L3 − 99L2 − 275L− 252 + 4m2

(
L2 − L+ 8

)]
2−7|c|−3

)
+O

(
|c|−4

)
,

hL−2
hL0

=2−2m

(
|c|−1 +

(
L2 + 27L− 10

)
2−5|c|−2

+
[
6L3 + 117L2 − 59L+ 82− 4m2

(
L2 + 3L+ 10

)]
2−7|c|−3

)
L!

(L− 2)!

+O
(
|c|−4

)
,

hL4
hL0

=− 2−5
(
|c|−1 +

(
2L+ 5− 4m2

)
2−2|c|−2 +

[
(L+ 5)(L+ 6)(L+ 7)(L+ 8)2−7

−
(
2L3 − 29L2 − 153L− 197

)
2−3 −m2 (24L+ 52)

]
2−4|c|−3

)
+O

(
|c|−4

)
,

hL−4
hL0

=2−5
(
|c|−1 +

(
2L− 3 + 4m2

)
2−2|c|−2 +

[
(L− 4)(L− 5)(L− 6)(L− 7)2−7

+
(
2L3 + 35L2 − 89L+ 75

)
2−3 +m2(24L− 28)

]
2−4|c|−3

)
L!

(L− 4)!

+O
(
|c|−4

)
,

hL6
hL0

=− 2−7m
[
|c|−2 −

(
3L2 − 243L− 616 + 64m2

)
3−12−6|c|−3

]
+O

(
|c|−4

)
,

hL−6
hL0

=2−7m
[
|c|−2 +

(
3L2 + 249L− 370 + 64m2

)
3−12−6|c|−3

] L!

(L− 6)!
+O

(
|c|−4

)
,

hL8
hL0

=2−11
[
|c|−2 +

(
2L+ 7− 4m2

)
2−1|c|−3

]
+O

(
|c|−4

)
,

hL−8
hL0

=2−11
[
|c|−2 +

(
2L− 5 + 4m2

)
2−1|c|−3

] L!

(L− 8)!
+O

(
|c|−4

)
,

(3.8)
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When plugging these values of hLr into Eq. (3.6), we arrived at the solution

0A`m,analytic =|c| (2L+ 1)−
(
2L2 + 2L+ 3− 4m2

)
2−2

− 1

|c|
(2L+ 1)

(
L2 + L+ 3− 8m2

)
2−4

− 1

|c|2
[
5
(
L4 + 2L3 + 8L2 + 7L+ 3

)
− 48m2

(
2L2 + 2L+ 1

)]
2−6

+O
(
|c|−3

)
.

(3.9)
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Figure 3.2: Residues of our numerical solutions for 0A`2 minus the analytic expectation
of Eq. (3.9) truncated at order |c|−2. The residue of all sequences reach machine
precision, indicating that the analytic correction made in Eq. (3.9) is in agreement
with our numerical data.
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When subtracting Eq. (1.10) from our analytic solution, we found that 0A`m,analytic−

0A`m,F lamm = − 40L2

64|c|2 +O (|c|−3). This result and our numerical results both agree on

a missing term of − 40L2

64|c|2 ; thus we have concluded that this term is correct to add to

our s = 0 solution. The agreement between our numerical solutions and Eq. (3.9)

is shown in Fig. 3.2. This correction helps to verify the accuracy of our numerical

results and corrects the s = 0 solution so that we may expand upon it for the s 6= 0

case.
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Chapter 4: Fits for Non-Anomalous Sequences of s 6= 0

Following the confirmation of the numerical accuracy of our generated data and

correcting the s = 0 solution, we began fitting our data for an accurate numerical

fit of the prolate separation constants, sA`m. To get a fit in the asymptotic limit,

we used the last 100 points of each sequence, which cover the values of 104.5 < ic ≤

105. The numeric fit for each sequence was separately determined by a least-square

fitting method. For reasons stated in our qualitative analysis, we will restrict the

fitting in this chapter to eigenvalues which exhibit linear leading-order behavior in the

asymptotic limit. Since the asymptotic prolate eigenvalues were generally complex,

we fit the real and imaginary components of each eigenvalue separately. We will be

fitting all of our eigenvalue sequences with respect to the index L′ = L − sN`m for

sN`m being the number of anomalous eigenvalues present for m and s and smaller `.

For the real components of sA`m, we assigned coefficients for each power of |c| we

would be fitting so that

Re(sA`m) = 0A`m +B1|c|+B2 +B3|c|−1 +B4|c|−2 +B5|c|−3. (4.1)
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Notice the inclusion of the corrected Flammer solution of 0A`m shown in Eq. (3.9).

This inclusion serves as a base for the fit so that all of the terms we determine in

this chapter will be corrections for general s. We made the substitution of L → L′

in the analytic s = 0 solution to account for the presence of anomalous lines in the

s 6= 0 cases. The accuracy of our numerical results typically became insufficient to

determine numerical fits on the order of |c|−3. As a result, we were unable to find the

value of B5, but B5 was left in the model while fitting to improve the accuracy of the

fits of the coefficients Bi for i = 1, 2, 3, 4.

As shown previously, the leading order behavior of the imaginary component is of

order |c|−1. Using Ci as coefficients, we used the following model to fit the imaginary

components,

Im(sA`m) = C1|c|−1 + C2|c|−2 + C3|c|−3. (4.2)

As before, the accuracy of the data only allows fits of order |c|−2, but C3 was included

to allow for more accurate fitting of the other two coefficients.

We numerically determined the fits for each coefficient, Bi and Ci, one at a time.

For each term we were fitting, we would determine the numeric fit for all values of m,
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s, and L′ that we generated. After fitting, we determined the value of the coefficients

in terms of m, s, and L′. After determining an accurate value for the leading order

coefficient being fit, this term would be added to our model and we would begin fitting

the new leading order coefficient.

First, we found the coefficients of the real component of sA`m starting with B1.

We found B1 = 0 for all combinations of m, s, and L′. For example, the values fitted

for the case of m = 1 can be seen in Table 4.1. This table is highly representative of

all values of m we tested.

s L′ B1 Error

0 0 1.61144973618034× 10−12 2.92530698651516× 10−15

0 1 3.60737656050638× 10−12 9.58807336966575× 10−15

0 2 8.00656830519925× 10−12 1.84483293736652× 10−14

0 3 1.44243599714087× 10−11 2.35690235165235× 10−14

0 4 2.21805586021287× 10−11 3.35655417731396× 10−14

0 5 2.44720102502109× 10−11 4.36925436258825× 10−14

1 0 1.00816101728544× 10−12 3.03919295276373× 10−15

1 1 9.59592542174497× 10−14 9.64172462636152× 10−15

1 2 2.02908639943997× 10−14 1.42341613016550× 10−14

1 3 4.49428126424873× 10−12 2.09426353824868× 10−14

1 4 8.82156959253786× 10−12 2.13930661687694× 10−14

1 5 8.22492976834100× 10−12 3.41061212041317× 10−14

2 0 1.10701134214716× 10−12 2.85600726964254× 10−15

2 1 3.68277288802595× 10−12 1.01646043687812× 10−14

2 2 2.03559255747130× 10−12 1.28196708994457× 10−14

2 3 6.24156971832138× 10−12 2.30586437899687× 10−14

2 4 1.08160722883971× 10−11 2.26355134616265× 10−14

2 5 1.07017234787836× 10−11 4.27448027885524× 10−14

Table 4.1: Table of numerical fits of B1 for select cases of m = 1.
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After setting B1 = 0 in Eq. (4.1), we began solving for B2. Again using the values

of m = 1, a sample set of numerical fits can be seen in Table 4.2. This additional

behavior was found to be B2 = s2 − s. Notice that our fit for B2 agrees with the

symmetry shown in Eq. (1.2).

s L′ B2 Error

0 0 1.390187268773607× 10−9 1.372703725434353× 10−10

0 1 9.006146865036666× 10−9 5.170681626176239× 10−10

0 2 3.057150124313022× 10−8 9.329203880801399× 10−10

0 3 1.109878074414446× 10−8 1.178131538094029× 10−9

0 4 2.290671890380051× 10−8 1.631630426467578× 10−9

0 5 4.788131999771475× 10−8 2.001175597546363× 10−9

1 0 5.620912397341866× 10−10 2.905833165258755× 10−11

1 1 1.376203432488877× 10−9 1.240029237553002× 10−10

1 2 4.643852170585592× 10−9 1.707441352635793× 10−10

1 3 1.242568793520602× 10−9 2.293874887497271× 10−10

1 4 1.064720064534127× 10−8 2.745407398375354× 10−10

1 5 4.724719959048166× 10−9 4.430047757444075× 10−10

2 0 2. 2.905833164444078× 10−11

2 1 2. 1.158503491722719× 10−10

2 2 2. 1.577567276497937× 10−10

2 3 2. 2.443956715759321× 10−10

2 4 2. 2.822038135462875× 10−10

2 5 2. 3.990964604705679× 10−10

Table 4.2: Table of numerical fits of B2 for select cases of m = 1.

Having determined a fit for B2, this term was substituted into Eq. (4.1), and we

began to fit B3. Just as before, we were able to fit this behavior and found that

B3 = (2L′ + 1) s2. The fit of B3 is demonstrated in Table 4.3 for the case of m = 1

and is representative of the broader data set.
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s L′ B3 Error

0 0 −0.0000218456 7.120289076355811× 10−6

0 1 −0.0000577089 0.0000260526
0 2 −0.000159854 0.0000504917
0 3 −0.000177989 0.0000625051
0 4 −0.000172193 0.0000793143
0 5 −0.000145381 0.000110382
1 0 1. 3.989883484130801× 10−7

1 1 3. 1.362804654126789× 10−6

1 2 5. 2.123777662907833× 10−6

1 3 6.99999 2.725609308253578× 10−6

1 4 9. 3.771090743246509× 10−6

1 5 11. 5.585836877783122× 10−6

2 0 4. 3.836594072209420× 10−7

2 1 12. 1.530368809407815× 10−6

2 2 20. 1.830162164807040× 10−6

2 3 28. 2.745243247210560× 10−6

2 4 36. 3.602677824102283× 10−6

2 5 44. 4.292110730421753× 10−6

Table 4.3: Table of numerical fits of B3 for select cases of m = 1.

As before, the fit for B3 was substituted into Eq. (4.1) and we began a fit for

B4. We determined that B4 =
(
3L′2 + 3L′ − 2m2 − s2 + 3

2

)
s2. This fit is partially

represented with the data from Table 4.4.
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s L′ B4 Error

0 0 −0.000399697 0.00304732
0 1 −0.0000489715 0.010169
0 2 −0.00370892 0.0176161
0 3 0.0184527 0.0253875
0 4 −0.0110799 0.0307539
0 5 0.0053206 0.0373198
1 0 −1.50002 0.000038718
1 1 4.49998 0.000115671
1 2 16.4998 0.000191763
1 3 34.4998 0.000268246
1 4 58.4998 0.000348398
1 5 88.5 0.000426144
2 0 −18. 0.0000340286
2 1 5.99993 0.000116085
2 2 53.9997 0.000189132
2 3 126. 0.000273375
2 4 222. 0.000333509
2 5 342. 0.000429283

Table 4.4: Table of numerical fits of B4 for select cases of m = 1.

Having fit the real component of sA`m as accurately as our data would allow, we

then moved on to fitting Eq. (4.2) for C1 and C2. Beginning with the fit for C1, the

first term in the expansion was determined to be C1 = 2ms2. This agrees with the

fit shown in Table 4.5 for the case of m = 1.
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s L′ C1 Error

0 0 0. 0.
0 1 0. 0.
0 2 0. 0.
0 3 0. 0.
0 4 0. 0.
0 5 0. 0.
1 0 2. 3.392651077945907× 10−14

1 1 2. 3.698566830855681× 10−13

1 2 2. 2.165816635160056× 10−12

1 3 2. 6.290143330802905× 10−12

1 4 2. 1.367737860213665× 10−11

1 5 2. 2.526912676799165× 10−11

2 0 8. 1.096540873219888× 10−12

2 1 8. 1.402410181696953× 10−12

2 2 8. 3.987145757394644× 10−12

2 3 8. 1.887313510420857× 10−11

2 4 8. 4.707493655418772× 10−11

2 5 8. 9.244112014192825× 10−11

Table 4.5: Table of numerical fits of C1 for select cases of m = 1.

After substituting the value of C1 into Eq. (4.2), we began fitting for C2. This

final iteration on fitting the non-anomalous data, shown representatively in Table 4.6,

revealed that C2 = 4(2L′ + 1)ms2.
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s L′ C2 Error

0 0 0. 0.
0 1 0. 0.
0 2 0. 0.
0 3 0. 0.
0 4 0. 0.
0 5 0. 0.
1 0 4. 3.92070910272162× 10−10

1 1 12. 4.63473482038753× 10−9

1 2 20. 2.71090099003680× 10−8

1 3 28. 7.86958589314894× 10−8

1 4 36. 1.71080372114226× 10−7

1 5 43.9999 3.15978068495579× 10−7

2 0 16. 1.36228373821577× 10−8

2 1 48. 1.73600405585129× 10−8

2 2 80. 4.96015363826839× 10−8

2 3 112. 2.34559945831725× 10−7

2 4 144. 5.84921927272765× 10−7

2 5 176. 1.14819089667721× 10−6

Table 4.6: Table of numerical fits of C2 for select cases of m = 1.

With these numeric solutions for the values of Bi and Ci, an accurate fit for the

asymptotic series solution of sA`m was determined. Keeping in mind symmetry from

Eq. (1.1), even though we fit all variables as |c|, the odd powers of the imaginary

component must actually depend upon the sign of c, and we represented this in

the final equation. For non-anomalous eigenvalues, the power series solution was
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determined to be

sA`m =|c| (2L′ + 1)−
(
2L′2 + 2L′ + 3− 4m2 + 4s− 4s2

)
2−2

− 1

|c|
[
2L′3 + 3L′2 +

(
7− 16m2 − 32s2

)
L′ + 3 + 8m2 − 16s2

]
2−4 − 2ms2

c

− 1

|c|2

[
5
(
L′4 + 2L′3 + 8L′2 + 7L′ + 3

)
− 48m2

(
2L′2 + 2L′ + 1

)
+ 32

(
2s4 + 4m2s2 − 6L′s2 − 6L′2s2 − 3s2

)
+ 256 (2L′ + 1)ms2i

]
2−6 +O

(
|c|−3

)
.

(4.3)

Equation (4.3) was found to agree with numerical fits found for s = 2 and m = 0 in

Ref. [10], which fit only non-anomalous eigenvalues.
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Chapter 5: Fits for Anomalous Sequences

In this chapter, we will work to include the behavior of the anomalous line se-

quences in our numeric fits for the prolate asymptotic eigenvalues. In order to do

this, we first set out to understand which combinations of m, s, and L lead to anoma-

lous eigenvalue sequences. Then, we wanted to fit these anomalous lines. From Ch. 4,

we already know that for a sequence to be anomalous, the real component of sA`m will

exhibit quadratic leading order behavior in agreement with Eq. (2.1). We also know

that the imaginary component of an anomalous line will have linear leading-order

behavior.
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Type 1 Anomalous Sequence
Type 2 Anomalous Sequence

Figure 5.1: Combinations of m, s, and ` which yield anomalous lines. Note the
difference in the distribution of the type 1 sequences vs. the type 2 sequences. The
type 1 anomalous eigenvalue sequences are clustered near low values of L while the
type 2 anomalous sequences are more evenly distributed.

We did not find any rule that precisely predicted which combinations of m, s,

and L were anomalous, but we found some general trends. For the combinations

of m, s, and L checked in this study, it was always true that any sequence with

|m| < 2 or |s| < 2|m|
3

+ 1 was not anomalous. It was also always true that eigenvalues

which obeyed the constraints of L ≤ 5|s|
6
− |m|

2
− 1 and L ≤ |m|

3
− |s|

30
− 10

13
were found

to be anomalous. We decided to label the anomalous lines which adhered to these

constraints as type 1 anomalous lines. For all other combinations of m, s, and L, we

were unable to find a method for determining which lines would be anomalous. We

labeled the rest of these anomalous lines as type 2. Figure 5.1 shows the anomalous
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line combinations separated by type in the space of combinations of m, s, and L

checked in this study.

Figure 5.2: The two planes illustrate the constraints on type 1 anomalous sequences.
All points in this figure are the type 1 anomalous lines, and all of these points fall on
or under the two planes which represent L ≤ 5|s|

6
− |m|

2
− 1 and L ≤ |m|

3
− |s|

30
− 10

13
.

One can visualize the constraints that leads to type 1 anomalous lines in Fig. 5.2.

Of the 670 anomalous lines that we found, 441 of them were type 1. A full list of

combinations of m, s, and L which lead to anomalous lines separated by type can be

found in Appendices A and B. Since type 1 anomalous lines appear for low values of L

and we primarily checked low values of L, we cannot draw a conclusion with regards

to if type 1 anomalous lines are generally more common than type 2 anomalous lines.
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Next, we moved on to determining an asymptotic prolate fit for the anomalous

eigenvalue sequences. When looking at the linear and constant order behavior of the

anomalous sequences, it became evident that the type 1 anomalous lines agreed with

the first three terms of the analytic power-series expansion for the asymptotic oblate

eigenvalue solutions given in Eq. (1.4). The even and odd parity in |c| for the real

and imaginary components respectively is conveniently explained by the dependence

upon the phase of c of Eq. (1.4). Starting with the order c−1 term, there is distinct

disagreement between the numeric type 1 anomalous solutions and Eq. (1.4), which

we will fit later in this chapter.

It turns out that the type 2 anomalous lines also fit Eq. (1.4) out to constant order

with a noticeable difference in the fit behavior. Similarly to how we had to adjust the

label of L to L′ for the non-anomalous eigenvalues, we must shift the label of L for the

type 2 anomalous eigenvalue sequences. We chose the new label of L∗ and this shift

goes as L→ L∗ = sN`m. This relabeling means that for a given combination of m and

s, the anomalous eigenvalue sequence with the lowest value of L will be L∗ = 0—the

next lowest value of L shall be L∗ = 1 and so on. Due to the constraints on type 1
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anomalous lines, it turns out that for type 1 anomalous eigenvalue sequences L = L∗,

and thus this label can also be used for the type 1 sequences.

This shift to L∗ means that all anomalous sequences, regardless of type, obey

sA`m,anomalous = −c2 + 2sq
∗
`mc−

1

2

(
sq
∗2
`m −m2 + 2s+ 1

)
+O

(
c−1
)

(5.1)

for

sq
∗
`m = 2L∗ + |m− s| − s+ 1. (5.2)

Notice the condition on Eq. (1.8) means that all combinations ofm, s, and L generated

in this study would use sq`m for the condition from Eq. (1.8) rather than Eq. (1.7).

Thus, we are unable to determine if we need two different definitions of sq
∗
`m for

anomalous lines outside our domain of solutions.
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100 200 300 400 500 600 700
|c|

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

Residue
Re(3Aℓ3) - |c 2 + 1 for L=0

Figure 5.3: Residue of the real component of the type 1 anomalous sequence 3A`3 for
L = 0 subtracting the quadratic and constant order behavior.

Starting at order c−1, the type 1 and type 2 anomalous lines appear to follow

two different polynomial fits. Figure 5.3 shows the real component of the type 1

anomalous sequence of 3A`3 for L = 0 after removing the quadratic and constant

order real behavior. After the constant order term, the next term in the solution for

L = 0 fits as order c−2 with no behavior of order c−1. This behavior is shared by all

type 1 anomalous eigenvalue sequences.
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100 200 300 400 500 600 700 800
|c|

-0.02

-0.01

0.01

0.02
Residue

Re(2Aℓ2) - |c 2 + 1 for L=1

100 200 300 400 500 600 700 800
|c|

-0.01

0.01

0.02

Residue
Im(2Aℓ2) - 2|c| for L=1

Figure 5.4: Residue of the real and imaginary components of the type 2 anomalous
sequence 2A`2 for L = 1 subtracting the behavior at constant order and above in |c|.
Note the oscillatory behavior which differs from the behavior shown in Fig. 5.3.

Figure 5.4 shows the real and imaginary residues of the type 2 anomalous line
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2A`2 for L = 1 after subtracting off the behavior of constant order and higher. This

behavior greatly contrasts with the type 1 anomalous sequence behavior shown in

Fig. 5.3. A log-log plot shows that the oscillatory behavior is of order |c|−1 in both

real and imaginary components of the residue. This oscillatory behavior is shared by

all type 2 sequences.

It is noteworthy that the type 1 anomalous eigenvalue sequences, which did not

exhibit the oscillatory behavior of order |c|−1, also did not exhibit the wobbling be-

havior we mentioned for some anomalous lines shown in Figs. 2.8 and 2.10. All type

2 anomalous eigenvalues surveyed showed some form of oscillatory behavior of order

|c|−1 akin to that shown in Fig. 5.4 and also exhibited the wobbling behavior described

before. This may indicate that there is some link between the two.

For type 2 anomalous sequences the oscillatory behavior prevents us from extend-

ing Eq. (5.1) to order c−1 due to an inability to arrive at reliable numerical fits. Thus,

we proceeded to attempt fitting the type 1 anomalous sequences. Just as for the

non-anomalous lines, we used the final 100 points in each type 1 anomalous sequence

to ensure that points used for fitting were sufficiently far in the asymptotic regime.
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We then used a model of

sA`m = −c2+2sq
∗
`mc−

1

2

(
sq
∗2
`m −m2 + 2s+ 1

)
+D1c

−1+D2c
−2+D3c

−3+D4c
−4. (5.3)

We started with the highest order term, D1. A small sample of numeric fits for D1 of

the type 1 anomalous sequences can be seen in Table 5.1.

m s L∗ sq
∗
`m D1 Error

3 3 0 -2 1.24999396 2.7886449143× 10−6

3 4 0 -2 3.00003810 0.0000168474
3 5 0 -2 5.24990466 0.0000604800
3 6 0 -2 8.00028868 0.0001628709
4 4 0 -3 1.74999999 1.6804714167× 10−10

4 5 0 -3 3.99999999 2.2306479145× 10−10

4 6 0 -3 6.75000000 8.4059148595× 10−10

4 7 0 -3 9.99999996 9.9274253335× 10−8

4 8 0 -3 13.7499998 2.7294211243× 10−7

4 9 0 -3 17.9999998 6.3754859270× 10−7

4 10 0 -3 22.7499993 1.3758337084× 10−6

4 11 0 -3 27.9999997 9.0687773061× 10−6

4 12 0 -3 33.7499915 0.0000163378
4 13 0 -3 39.9999982 0.0000251166
4 14 0 -3 46.7499818 0.0000426685
4 15 0 -3 53.9999673 0.0000712527
4 16 0 -3 61.7499924 0.0001086124
5 4 0 -2 6.99975657 0.0001170334

Table 5.1: Table of fits of D1 for select type 1 anomalous eigenvalue sequences.

If we find the difference between our polynomial fit of the data in Table 5.1 and the

term for the analytic oblate solutions, A1, which is shown in Eq. (1.5), we find that
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D1 − A1 = 1
8
s2( sq

∗
`m + m). This demonstrates that our numerical type 1 anomalous

eigenvalue solutions do not exactly fit the analytic oblate power-series solution derived

in Ref. [7] once we fit past constant order in c.

As with the non-anomalous numerical fits, we added our newly fit term of D1

to Eq. (5.3) and began to fit for the next term, D2. The term from the analytic

power-series expression for the asymptotic oblate case of order |c|−2 is A2, which is

shown in Eq. (1.6). We determined that D2−A2 = 1
8
s2 (( sq

∗
`m + 1)2 + 1), which again

shows only a slight but distinguishable difference in our numerical fit of the type 1

anomalous sequences and Eq. (1.4). A sample list of numeric fits for D2 can be found

in Table 5.2.
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m s L∗ sq
∗
`m D2 Error

3 3 0 -2 0.623898302078 0.0017244867790978
3 4 0 -2 1.500231687006 0.0104484835898758
3 5 0 -2 2.618153321697 0.0368447543296024
3 6 0 -2 3.995300986577 0.0978273216685553
4 4 0 -3 1.749988815883 0.0000209290823329
4 5 0 -3 3.999977407912 0.0000201373121023
4 6 0 -3 6.749985083639 0.0000207370894613
4 7 0 -3 9.999992873453 0.0000244567737245
4 8 0 -3 13.750019105424 0.0000672839104980
4 9 0 -3 17.999966332517 0.0001580777026734
4 10 0 -3 22.749950144191 0.0003494496999696
4 11 0 -3 27.999554149173 0.0016683488235863
4 12 0 -3 33.749348080236 0.0031025676111110
4 13 0 -3 40.001256822186 0.0049285181927592
4 14 0 -3 46.747928952831 0.0083848487908798
4 15 0 -3 54.002992070813 0.0136677482926649
4 16 0 -3 61.754577780630 0.0214581995690651
5 4 0 -2 3.470201796616 0.0719008117082672

Table 5.2: Table of fits of D2 for select type 1 anomalous eigenvalue sequences.

D2 is the final coefficient which we had sufficient numerical accuracy to reliably

determine. Thus, we concluded that the fit for the type 1 anomalous eigenvalue

sequences is

sA`m,type1 =− c2 + 2sq
∗
`mc−

1

2

[
sq
∗2
`m −m2 + 2s+ 1

]
− 1

8c

[
sq
∗3
`m −m2

sq
∗
`m + sq

∗
`m − 2s2( sq

∗
`m +m)

]
− 1

64c2
[
5 sq

∗4
`m −

(
6m2 − 10

)
sq
∗2
`m +m4 − 2m2

− 4s2
(
sq
∗2
`m −m2 − 1

)
+ 1− 8s2

(
( sq
∗
`m + 1)2 + 1

) ]
+O

(
c−3
)
.

(5.4)
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300 400 500 600
|c|

-5.×10-8

5.×10-8

Residue

Re(3Aℓ3- 3Aℓ3,type1) for L=0

300 400 500 600
|c|

-5.×10-8

5.×10-8

1.×10-7

Residue

Im(3Aℓ3- 3Aℓ3,type1) for L=0

Figure 5.5: Residue of the real and imaginary components of the type 1 anomalous
sequence 3A`3 for L = 0 after subtracting Eq. (5.4). Note that there is new oscillatory
behavior of order |c|−3 present, similar to the behavior seen in type 2 anomalous
sequences at order |c|−1 shown in Fig. 5.4.

Figure 5.5 shows a sample residue of the type 1 anomalous line of 3A`3 for L = 0
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after removing the behavior from Eq. (5.4). Note that this is the same sequence as

shown in Fig. 5.3 after removing some leading order terms. Both the real and imag-

inary component of this eigenvalue sequence has oscillatory behavior of order |c|−3,

and this general behavior is consistent with all type 1 anomalous sequences. This

behavior is of a very similar form to the oscillatory behavior of type 2 anomalous

sequences at order c−1 shown in Fig. 5.4. This oscillatory behavior prevents us from

determining reliable numerical fits for D3 and D4. It is evident that the key to ex-

tending the fits for the type 1 and type 2 anomalous sequences lies in determining the

nature of the oscillatory behavior present in each or analytically deriving corrections

for anomalous prolate eigenvalues.
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0.02
Residue

Re(2Aℓm2- 2Aℓ2,type1) for L=1

100 200 300 400 500 600 700 800
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-0.01

0.01

0.02
Residue

Im(2Aℓ2- 2Aℓ2,type1) for L=1

Figure 5.6: Residue of the real and imaginary components of the type 2 anomalous
line 2A`2 after subtracting out the the type 1 anomalous behavior given in Eq. (5.4).

72
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|c|

0.005

0.010

0.015

Residue
2Aℓ2- 2Aℓ2,type1| for L=1

Figure 5.7: Magnitude of the residue of the type 2 anomalous line 2A`2 after sub-
tracting out the the type 1 anomalous behavior given in Eq. (5.4). Once removing all
non-oscillatory behavior, the magnitude of the residue is of order |c|−1 and the shape
of the magnitude of the residue indicates that the oscillatory behavior in Fig. 5.6
seems to be due to a complex exponential term.

It appears that the type 2 anomalous eigenvalue sequences also partially follow the

numerical fit of the type 1 solutions given in Eq. (5.4). The only notable exception

would be the oscillatory behavior shown to be present for the type 2 anomalous

sequences. Figure 5.6 shows the real and imaginary components of the residue of

the same type 2 anomalous eigenvalue sequence shown in Fig. 5.4 after removing the

behavior from Eq. (5.4). Notice that the two components appear to oscillate more
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closely around zero than in Fig. 5.4. Figure 5.7 shows the magnitude of the residue.

These additional terms seem to have removed the dominant non-oscillatory behavior,

which allows us to more cleanly take the magnitude of the residue. This plot of

the magnitude of the residue is of order |c|−1 and demonstrates how this oscillatory

behavior appears to be due to a complex exponential term which we were unable to

determine. It seems reasonable to assume that the oscillatory behavior of the type 1

sequences shown in Fig. 5.5 is also due to a complex exponential term of order |c|−3,

but we cannot be sure with our current polynomial fit of type 1 sequences.
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Chapter 6: Conclusions

This study was a high-accuracy numerical analysis of solutions to the angular

Teukolsky equation in the asymptotic prolate limit for all integer combinations of

−10 ≤ s ≤ 20, −10 ≤ m ≤ 20, and L ≤ 15. As shown in Fig. 2.11, we noted the

presence of lines with quadratic leading order behavior, which we refer to as anoma-

lous eigensolutions of Eq. (0.3). The presence of the anomalous lines caused us to

determine three different numeric fits for the power-series expansion in |c| for eigen-

value solutions to Eq. (0.3)—one for the non-anomalous eigenvalue solutions and one

for each of two types of anomalous eigenvalue solutions. The non-anomalous eigen-

value solutions agreed with previously explored analytic and numeric eigensolutions,

with the exception of a correction we derived for s = 0 solutions shown in Eq. (3.9).

Our numeric fit for general s is to higher-order in |c| or is more general than previ-

ous numeric fits for prolate sA`m. Our non-anomalous numerical fit is displayed in

Eq. (4.3).

With respect to the anomalous eigenvalue solutions, we determined a rule to par-
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tially determine which eigensolutions would be anomalous. We also found agreement

between all numeric anomalous prolate solutions and the analytic oblate power-series

expansion out to constant order, given in Eq. (5.1). In this categorization and fitting of

the anomalous eigenvalue solutions, we were able to group the anomalous sequences

into two categories based on combinations of m, s, and L, as well as behavior for

the power-series expansion of the eigenvalue solutions at order c−1. For the type 1

anomalous eigenvalue sequences, we were able to use Eq. (1.4) as a base to extend

the anomalous power-series expansion to order c−2. This power-series expansion is

shown in Eq. (5.4). We were able to determine that the type 2 anomalous eigenvalue

sequences also partially agreed with Eq. (5.4), with a correction needed for a complex

exponential term of order c−1. Our justification for the existence of such a term is

best demonstrated by Fig. 5.6.

The primary results of interest from this work are the numeric fits of asymptotic

prolate values of sA`m, particularly for non-anomalous solutions. Our fit for sA`m

can hopefully reduce the numerical load required for works which require solutions to

Eq. (0.3) in the future. We also hope that our numeric fit may provide some direction
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for future attempts to analytically generalize solutions to Eq. (0.3).

The other interesting result from this work is the existence of the anomalous

eigenvalue solutions to Eq. (0.3) in the asymptotic prolate case, which have not been

previously predicted nor explored. We would be interested in better understanding

the properties of the anomalous eigenvalue solutions. In particular, we would like

to know a general rule for which eigenvalue lines will be anomalous and how many

anomalous lines one should expect for a given combination of m and s. Based on

how the anomalous eigenvalue sequences fit to Eq. (5.1), it is possible that there are a

countably infinite number of anomalous lines and each anomalous eigensolution may

correlate to an eigensolution of the analytic oblate case. If this is indeed true, we

would be very interested in knowing if there are solutions in the case of complex c

which also partially fit Eq. (1.4). Both of these questions provide useful information

for the possibility of constructing corrections to Eq.(1.4), starting at order c−1, that

could generalize it for complex c.

Since we only found anomalous eigenvalue solutions for values of |s| ≥ 2, and most

applications of anomalous eigenvalue solutions to Eq. (0.3) are for values of −2 ≤ s ≤
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2, the s = ±2 anomalous eigenvalues will likely be most relevant. From a physical

standpoint, the usefulness of anomalous lines is questionable and will likely depend

upon the prevalence of wave equations which require asymptotic prolate solutions and

if anomalous spin-weighted spheroidal functions will make significant contributions to

these wave equations compared to the non-anomalous solutions of sS`m. The case of

s = ±2 is simplified greatly with regards to anomalous eigensolutions since we found

only four anomalous eigensolutions for this case: 2A32, −2A32, 2A3(−2), and −2A3(−2).

It is worth noting that the anomalous eigenvalue sequences required a significantly

larger matrix size to compute for our error threshold than their non-anomalous coun-

terparts. Including the anomalous eigensolutions in the data we collected greatly

increased the computational work required to find solutions as well as decreased the

efficiency in storing and handling our data. If one wished to extend our non-anomalous

solutions given in Eq. (4.3), this could be done with greater efficiency by not tracking

the anomalous eigenvalue solutions. Thus, our solutions could be extended with less

computational work and smaller data. The presence of the anomalous solutions in

the prolate asymptotic case leaves room to explore if there are eigenvalue solutions
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which partially agree with the analytic oblate solution given in Eq. (1.4) for general

complex c.
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Appendix A: List of Type 1 Anomalous Lines

The following table is a list of which combinations of m, s, and L lead to type

1 anomalous eigenvalue sequences. These sequences obey constraints given in Ch. 5,

exhibit no deflection behavior similar to that seen in Fig. 2.8, obey the polynomial

fit given in Eq. (5.4), and have oscillatory of order |c|−3 as shown in Fig. 5.5.

m s L m s L m s L m s L

3 3 0 3 4 0 3 5 0 3 6 0
4 4 0 4 5 0 4 6 0 4 7 0
4 8 0 4 9 0 4 10 0 4 11 0
4 12 0 4 13 0 4 14 0 4 15 0
4 16 0 5 4 0 5 5 0 5 6 0
5 7 0 5 8 0 5 9 0 5 10 0
5 11 0 5 12 0 5 13 0 5 14 0
5 15 0 5 16 0 5 17 0 5 18 0
5 19 0 5 20 0 6 5 0 6 6 1
6 6 0 6 7 1 6 7 0 6 8 0
6 9 0 6 10 0 6 11 0 6 12 0
6 13 0 6 14 0 6 15 0 6 16 0
6 17 0 6 18 0 6 19 0 6 20 0
7 6 0 7 7 1 7 7 0 7 8 1
7 8 0 7 9 1 7 9 0 7 10 1
7 10 0 7 11 1 7 11 0 7 12 0
7 13 0 7 14 0 7 15 0 7 16 0
7 17 0 7 18 0 7 19 0 7 20 0
8 6 0 8 7 0 8 8 1 8 8 0
8 9 1 8 9 0 8 10 1 8 10 0
8 11 1 8 11 0 8 12 1 8 12 0
8 13 1 8 13 0 8 14 1 8 14 0
8 15 1 8 15 0 8 16 1 8 16 0
8 17 0 8 18 0 8 19 0 8 20 0
9 7 0 9 8 1 9 8 0 9 9 1
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9 9 0 9 10 1 9 10 0 9 11 1
9 11 0 9 12 1 9 12 0 9 13 1
9 13 0 9 14 1 9 14 0 9 15 1
9 15 0 9 16 1 9 16 0 9 17 1
9 17 0 9 18 1 9 18 0 9 19 1
9 19 0 9 20 1 9 20 0 10 8 0
10 9 1 10 9 0 10 10 2 10 10 1
10 10 0 10 11 2 10 11 1 10 11 0
10 12 2 10 12 1 10 12 0 10 13 1
10 13 0 10 14 1 10 14 0 10 15 1
10 15 0 10 16 1 10 16 0 10 17 1
10 17 0 10 18 1 10 18 0 10 19 1
10 19 0 10 20 1 10 20 0 11 8 0
11 9 0 11 10 1 11 10 0 11 11 2
11 11 1 11 11 0 11 12 2 11 12 1
11 12 0 11 13 2 11 13 1 11 13 0
11 14 2 11 14 1 11 14 0 11 15 2
11 15 1 11 15 0 11 16 1 11 16 0
11 17 1 11 17 0 11 18 1 11 18 0
11 19 1 11 19 0 11 20 1 11 20 0
12 9 0 12 10 1 12 10 0 12 11 1
12 11 0 12 12 2 12 12 1 12 12 0
12 13 2 12 13 1 12 13 0 12 14 2
12 14 1 12 14 0 12 15 2 12 15 1
12 15 0 12 16 2 12 16 1 12 16 0
12 17 2 12 17 1 12 17 0 12 18 2
12 18 1 12 18 0 12 19 2 12 19 1
12 19 0 12 20 2 12 20 1 12 20 0
13 10 0 13 11 1 13 11 0 13 12 2
13 12 1 13 12 0 13 13 3 13 13 2
13 13 1 13 13 0 13 14 2 13 14 1
13 14 0 13 15 2 13 15 1 13 15 0
13 16 2 13 16 1 13 16 0 13 17 2
13 17 1 13 17 0 13 18 2 13 18 1
13 18 0 13 19 2 13 19 1 13 19 0
13 20 2 13 20 1 13 20 0 14 10 0
14 11 0 14 12 1 14 12 0 14 13 2
14 13 1 14 13 0 14 14 3 14 14 2
14 14 1 14 14 0 14 15 3 14 15 2
14 15 1 14 15 0 14 16 3 14 16 2
14 16 1 14 16 0 14 17 2 14 17 1
14 17 0 14 18 2 14 18 1 14 18 0
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14 19 2 14 19 1 14 19 0 14 20 2
14 20 1 14 20 0 15 11 0 15 12 1
15 12 0 15 13 1 15 13 0 15 14 2
15 14 1 15 14 0 15 15 3 15 15 2
15 15 1 15 15 0 15 16 3 15 16 2
15 16 1 15 16 0 15 17 3 15 17 2
15 17 1 15 17 0 15 18 3 15 18 2
15 18 1 15 18 0 15 19 3 15 19 2
15 19 1 15 19 0 15 20 3 15 20 2
15 20 1 15 20 0 16 11 0 16 12 0
16 13 1 16 13 0 16 14 2 16 14 1
16 14 0 16 15 3 16 15 2 16 15 1
16 15 0 16 16 3 16 16 2 16 16 1
16 16 0 16 17 3 16 17 2 16 17 1
16 17 0 16 18 3 16 18 2 16 18 1
16 18 0 16 19 3 16 19 2 16 19 1
16 19 0 16 20 3 16 20 2 16 20 1
16 20 0 17 12 0 17 13 0 17 14 1
17 14 0 17 15 2 17 15 1 17 15 0
17 16 3 17 16 2 17 16 1 17 16 0
17 17 4 17 17 3 17 17 2 17 17 1
17 17 0 17 18 4 17 18 3 17 18 2
17 18 1 17 18 0 17 19 3 17 19 2
17 19 1 17 19 0 17 20 3 17 20 2
17 20 1 17 20 0 18 13 0 18 14 1
18 14 0 18 15 1 18 15 0 18 16 2
18 16 1 18 16 0 18 17 3 18 17 2
18 17 1 18 17 0 18 18 4 18 18 3
18 18 2 18 18 1 18 18 0 18 19 4
18 19 3 18 19 2 18 19 1 18 19 0
18 20 4 18 20 3 18 20 2 18 20 1
18 20 0 19 13 0 19 14 0 19 15 1
19 15 0 19 16 2 19 16 1 19 16 0
19 17 3 19 17 2 19 17 1 19 17 0
19 18 3 19 18 2 19 18 1 19 18 0
19 19 4 19 19 3 19 19 2 19 19 1
19 19 0 19 20 4 19 20 3 19 20 2
19 20 1 19 20 0 20 14 0 20 15 1
20 15 0 20 16 1 20 16 0 20 17 2
20 17 1 20 17 0 20 18 3 20 18 2
20 18 1 20 18 0 20 19 4 20 19 3
20 19 2 20 19 1 20 19 0 20 20 5
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20 20 4 20 20 3 20 20 2 20 20 1
20 20 0 - - - - - - - - -

Table A.1: Table of all combinations of m, s, and L which are type 1 anomalous
sequences of sA`m
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Appendix B: List of Type 2 Anomalous Lines

The following table is a list of all type 2 anomalous sequences found in this study.

These anomalous sequences all have some form of deflection behavior similar to that

seen in Fig. 2.8, have oscillatory behavior of order |c|−1 shown in Fig. 5.4, and only

follow the polynomial power-series expansion given in Eq. (5.1) after making the shift

of L→ L∗ = sN`m.

m s L m s L m s L m s L

2 2 1 2 3 3 2 4 5 2 5 8
2 6 12 2 7 16 3 7 1 3 8 1
3 9 1 3 10 2 3 11 2 3 12 3
3 13 3 3 14 4 3 15 4 3 16 5
3 17 5 3 18 6 3 19 7 3 20 7
4 3 9 4 17 1 4 18 1 4 19 1
4 20 1 5 5 3 5 6 5 5 7 7
5 8 10 5 9 13 5 10 17 5 11 20
6 8 2 6 9 3 6 10 4 6 11 5
6 12 6 6 13 7 6 14 8 6 15 9
6 16 10 6 17 12 6 18 13 6 19 14
6 20 16 7 5 3 7 6 8 7 7 16
7 12 2 7 13 2 7 14 3 7 15 3
7 16 4 7 17 4 7 18 5 7 19 5
7 20 6 8 7 2 8 8 5 8 9 7
8 10 9 8 11 12 8 12 15 8 13 18
8 14 21 8 17 2 8 18 2 8 19 2
8 20 2 9 6 8 9 7 20 9 9 3
9 10 3 9 11 4 9 12 5 9 13 7
9 14 8 9 15 9 9 16 11 9 17 12
9 18 14 9 19 15 9 20 22 10 7 1
10 8 5 10 9 10 10 10 15 10 11 20
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10 13 3 10 14 4 10 15 4 10 16 5
10 17 6 10 18 6 10 19 7 10 20 8
11 7 17 11 9 2 11 10 5 11 11 7
11 12 9 11 13 12 11 14 14 11 15 17
11 16 3 11 16 20 11 17 3 11 17 23
11 18 3 11 18 25 11 19 4 11 20 4
12 8 4 12 9 10 12 10 18 12 11 3
12 12 5 12 13 6 12 14 7 12 15 8
12 16 9 12 17 11 12 18 12 12 19 14
12 20 23 13 9 1 13 10 4 13 11 8
13 12 12 13 13 17 13 14 4 13 14 21
13 15 4 13 15 25 13 16 5 13 17 6
13 18 7 13 19 8 13 20 8 14 9 8
14 10 18 14 11 2 14 12 4 14 13 7
14 14 10 14 15 12 14 16 14 14 17 4
14 17 16 14 18 4 14 18 19 14 19 5
14 19 22 14 20 5 14 20 24 15 10 2
15 11 7 15 12 13 15 13 3 15 13 19
15 14 4 15 14 27 15 15 7 15 16 8
15 17 9 15 18 10 15 19 12 15 20 13
16 10 14 16 12 3 16 13 7 16 14 10
16 15 14 16 16 5 16 16 19 16 17 6
16 17 22 16 18 6 16 18 26 16 19 7
16 19 30 16 20 8 17 11 5 17 12 12
17 13 2 17 13 27 17 14 4 17 15 7
17 16 9 17 17 12 17 18 14 17 19 5
17 19 16 17 20 5 17 20 19 18 12 2
18 13 6 18 14 10 18 15 3 18 15 15
18 16 4 18 16 21 18 17 6 18 17 26
18 17 31 18 18 9 18 19 10 18 20 11
19 12 9 19 13 18 19 14 3 19 15 6
19 16 9 19 17 13 19 18 5 19 18 17
19 19 7 19 20 8 19 20 34 20 13 3
20 14 9 20 15 15 20 16 4 20 16 22
20 17 6 20 17 32 20 18 9 20 19 12
20 20 14 - - - - - - - - -

Table B.1: List of all combinations of m, s, and L which lead to type 2 anomalous
sequences of sA`m
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