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1. Introduction 

Black holes have long been of great interest to the field of astrophysics. With the 

recent detection of gravitational waves, black holes have gained great popularity and are 

very relevant in the current study of space. One such aspect of black holes, and 

gravitational waves themselves, is the study of the ring-down structure of gravitational 

waves, when the wave is damping. 

One method of studying these ring-downs has been to resolve the quasi-normal 

modes of Kerr black holes, and particularly the asymptotic behavior of these modes. 

While exploring this, it became evident that these modes could be described with spin-

weighted spheroidal harmonics[1]. This task would be made easier if analytic 

approximations for the asymptotic behaviors of these harmonics were resolved to high 

accuracy. The goal of this paper is to find these asymptotic approximations using 

numerical methods. 

2. Spin-Weighted Spheroidal Harmonics 

Spin-weighted spheroidal harmonics (SWSHs) are complete sets of orthonormal 

functions for describing the behavior of a function on the surface of spheroids. However, 

it is important to first understand functions that work in spherical coordinates, and how 

these relate to the spheroidal case. 

In order to describe functions on the surface of a 2-sphere, one can use spherical 

harmonics, 𝑌ℓ𝑚(𝜃, 𝜙), which are functions of 𝜃 and 𝜙 in spherical coordinates. Spherical 

harmonics are the functions which satisfy the angular equation: 
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(2.1) 

sin(𝜃)
𝜕

𝜕𝜃
(sin(𝜃)

𝜕𝑌

𝜕𝜃
) +

𝜕2𝑌

𝜕𝜙2
= −ℓ(ℓ + 1) sin2(𝜃)𝑌, 

for which the solution is:  

(2.2) 

𝑌ℓ𝑚(𝜃, 𝜙) = (−1)𝑚√
(2ℓ + 1)(ℓ − |𝑚|)!

4𝜋(ℓ + |𝑚|)!
𝑒𝑖𝑚𝜙𝑃ℓ𝑚(cos(𝜃)), 

where 𝑃ℓ𝑚(x) are the associated Legendre polynomials. Because the 𝜙 dependence is 

𝑒𝑖𝑚𝜙, then after the change in coordinates of 𝑥 = cos(𝜃), Eq. (2.1) can be written: 

(2.3) 

𝜕

𝜕𝑥
[(1 − 𝑥2)

𝜕

𝜕𝑥
𝑌ℓ𝑚] − [

𝑚2

1 − 𝑥2
] 𝑌ℓ𝑚 = −ℓ(ℓ + 1)𝑌ℓ𝑚. 

 This is an eigenvalues problem of the form we will consider below. 𝑌ℓ𝑚 are the 

eigenfunctions and the eigenvalues are ℓ(ℓ + 1). More commonly in the context of 

harmonics, we think of ℓ(ℓ + 1) as the separation constant. For all subsequent 

eigenfunctions, the 𝜙 dependence is also of the form 𝑒𝑖𝑚𝜙, as for 𝑌ℓ𝑚. The spheroidal 

harmonics exhibit two useful properties. First, they obey the relation: 

(2.4) 

⟨𝑌ℓ𝑚|𝑌ℓ′𝑚′⟩ = ∫ ∫ 𝑌ℓ𝑚
∗ 𝑌ℓ′𝑚′ sin(𝜃) 𝑑𝜙𝑑𝜃

2𝜋

0

𝜋

0

= 𝛿ℓℓ′𝛿𝑚𝑚′ . 
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This is the property of orthonormality where none of these functions can be described in 

terms of the others. Spherical harmonics also have the property of being complete, which 

means that any scalar function on the 2-sphere can be completely described as a linear 

combination of these basis functions: 

(2.5) 

𝑓(𝜃, 𝜙) = ∑ 𝐶ℓ𝑚

ℓ,𝑚

𝑌ℓ𝑚(𝜃, 𝜙), 

where the 𝐶ℓ𝑚’s are complex coefficients. 

Notice that the function 𝑓(𝜃, 𝜙) is scalar-valued, meaning that there is no 

information regarding the direction of values on the surface of the 2-sphere. In order to 

describe objects with higher-rank, one must use vector or tensor-spherical harmonics or, 

more generally, spin-weighted spherical harmonics, which satisfy the differential 

equation[2][3]: 

(2.6) 

𝜕

𝜕𝑥
[(1 − 𝑥2)

𝜕

𝜕𝑥
 
𝑠
𝑌ℓ𝑚] + [𝑠 −

(𝑚 + 𝑠𝑥)2

1 − 𝑥2
]  

𝑠
𝑌ℓ𝑚 = −(ℓ(ℓ + 1) − 𝑠(𝑠 + 1)) 

𝑠
𝑌ℓ𝑚. 

These spin-weighted spherical harmonics,  𝑠𝑌ℓ𝑚(𝜃, 𝜙), take into account 𝑠, the 

spin-weight of the harmonic. The separation constant is (ℓ(ℓ + 1) − 𝑠(𝑠 + 1)). In the 

case 𝑠 = 0,  0𝑌ℓ𝑚(𝜃, 𝜙) = 𝑌ℓ𝑚(𝜃, 𝜙), which are the spherical harmonics. When 𝑠 = ±1, 

 𝑠𝑌ℓ𝑚(𝜃, 𝜙) can be used to represent vector-valued functions. Values of 𝑠 = −2, 0, 2, can 

be used to represent second-rank tensors. This can be continued to increase the rank of 
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these spin-weighted spherical harmonics to any rank required. In general, any rank object 

can be represented in terms of spin-weighted spherical harmonics. 

The spin-weighted spherical harmonics are naturally associated with a spherical 

coordinate system/geometry; however, it is sometimes necessary to work in non-spherical 

coordinates. In the case of scalar valued functions, scalar spheroidal harmonics 

𝑆ℓ𝑚(𝑐; 𝜃, 𝜙) are well known. These spheroidal harmonics satisfy the equation[4][5]: 

(2.7) 

𝜕

𝜕𝑥
[(1 − 𝑥2)

𝜕

𝜕𝑥
𝑆ℓ𝑚] + [(𝑐𝑥)2 −

𝑚2

1 − 𝑥2
] 𝑆ℓ𝑚 = −𝐴ℓ𝑚𝑆ℓ𝑚. 

The subscript ℓ, the multipole moment, can be a positive integer, odd half-integer value, 

or zero. However, for this paper, we will not consider the odd half-integer cases. In other 

words, ℓ ∈ ℕ ∪ {0}. The second subscript 𝑚 = −ℓ, −ℓ + 1, … , ℓ − 1, ℓ, is the azimuthal 

index. The variable 𝑐 ∈ ℂ is the oblateness parameter, which describes the shape of the 

spheroid. For values of 𝑐 ∈ ℝ, the spheroid is oblate. If 𝑐 is purely imaginary, the 

spheroid is prolate, and when 𝑐 = 0, the coordinates become spherical. Finally, 𝐴ℓ𝑚, the 

angular separation constant, is the eigenvalue of this differential equation. Notice that if 

𝑐 = 0, then 𝐴ℓ𝑚 = ℓ(ℓ + 1). 

These scalar spheroidal harmonics are useful, but again are scalar valued. In order to 

describe higher rank objects, one again needs to take into account an additional spin-

weight parameter, 𝑠. The needed functions are called spin-weighted spheroidal 

harmonics, and they satisfy the modified version of Eq. (2.7) known as the angular 

Teukolsky equation[1][2][6]: 
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(2.8) 

𝜕

𝜕𝑥
[(1 − 𝑥2)

𝜕

𝜕𝑥
 𝑠𝑆ℓ𝑚] + [(𝑐𝑥)2 − 2𝑐𝑠𝑥 + 𝑠 −

(𝑚 + 𝑠𝑥)2

1 − 𝑥2
]  𝑠𝑆ℓ𝑚 = − 𝑠𝑆ℓ𝑚 𝑠𝐴ℓ𝑚. 

So, Eq. (2.8), and therefore  𝑠𝐴𝑙𝑚 and  𝑠𝑆𝑙𝑚, now depends upon the spin weight 𝑠. It is 

then clear that at 𝑠 = 0, Eq.(2.8) becomes Eq.(2.7) to describe scalar spheroidal 

harmonics.  

Spin-weighted spheroidal harmonics were first defined by Teukolsky in the context of 

perturbations on Kerr geometries[1]. This type of behavior is particularly important in 

understanding objects like black holes. They have application in problems involving 

perturbations in Kerr, such as extreme mass-ratio black hole binaries, quasi-normal 

modes, etc. 

3. Particular Cases for Spin-Weighted Spheroidal Harmonics 

In general, there are no closed-form analytic solutions for the SWSHs. Numerous 

approximation methods are available to find the separation constant  𝑠𝐴𝑙𝑚 and its 

associated eigenfunction  𝑠𝑆𝑙𝑚
[2][6]. These solutions to the eigenvalue problem have been 

solved for various cases of 𝑐. Most of these methods are numerical, but expansions for 

small |𝑐| are known as are certain asymptotic expansions[6].  

In the oblate case of large values of |𝑐|, analytic solutions for 𝑠 = 0 have been known 

for the power-series expansion in 𝑐. This was later expanded to include behavior for 

varying values of 𝑠[6]. 

When working in the prolate case, for large values of |𝑐| for scalar spheroidal 

harmonics, there is an approximation for calculating the eigenvalues[6]: 
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(3.1)  

 0𝐴𝑙𝑚 = |𝑐|(2𝐿 + 1) − (
1

2
𝐿2 +

1

2
𝐿 +

3

4
− 𝑚2)

−
1

|𝑐|
(2𝐿 + 1) (

1

16
𝐿2 +

1

16
𝐿 +

3

16
−

1

2
𝑚2)

−
1

|𝑐|2
[

5

64
(𝐿4 + 2𝐿3 + 7𝐿 + 3) −

3

4
𝑚2(2𝐿2 + 2𝐿 + 1)] + 𝜗 (

1

|𝑐|3
), 

where 𝐿 = ℓ − max(|𝑚|, |𝑠|). However, there has yet to be any successful extension to 

𝑠 ≠ 0.  

4. Methods 

We want to expand Eq. (3.1) to include the cases of 𝑠 ≠ 0. In order to find the full 

asymptotic behavior of  𝑠𝐴𝑙𝑚, it was important to generate data to which fits could be 

made. So, this project began by numerically approximating the eigenvalues and 

eigenvectors of the spin-weighted spheroidal harmonic solutions to Eq.(2.8). This was 

done by converting the equation into a matrix eigenvalue problem. The SWSH 

eigenvectors were defined as a linear combination of the spin-weighted spherical 

harmonic eigenvectors: 

(4.1) 

 𝑠𝑆ℓ𝑚(𝑐; 𝜃, 𝜙) = ∑ 𝐶ℓ′ℓ𝑚(𝑐) 𝑠𝑌ℓ′𝑚(𝜃, 𝜙)

ℓ′

. 

Inserting Eq. (4.1) into Eq. (2.8), and using recurrence relations for the  𝑠𝑌ℓ𝑚(𝜃, 𝜙), 

this was converted to a matrix eigenvalue problem[2]. For fixed values of  𝑚, 𝑠, and 𝑐 we 

obtain an infinite-dimensional matrix eigenvalue problem. The set of solutions are 
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indexed by the multipole moment, ℓ. This eigenvalue problem can be solved numerically 

by truncating the matrix to dimension N. The eigenvalues will be the  𝑠𝐴𝑙𝑚(𝑐), and the 

eigenvectors give the 𝐶ℓ′ℓ𝑚(𝑐) in Eq. (4.1). 

Because of the truncation, the numerical solutions come with some amount of error. 

In order to check the accuracy of the approximate values, the contribution of each spin-

weighted spherical harmonic 𝐶ℓ′ℓ𝑚 was checked for the eigenvector associated with the 

largest multipole moment, ℓ = 𝑛, of interest. In the convergent regime, the magnitude of 

the 𝐶ℓ′ℓ𝑚 will decrease exponentially with increasing ℓ′. So, after calculating the 

eigenvectors, the values for the two highest values of ℓ′ were pulled out, which are  

𝐶(𝑁−1)𝑛𝑚(𝑐) and 𝐶𝑁𝑛𝑚(𝑐). If either of the normalized coefficients made a contribution to 

the eigenvector greater that 10−15, the error was deemed to be too high. In this case, the 

matrix size was increased, and the eigenvectors were then recalculated. The process was 

repeated until a sufficiently large matrix was used to give solutions to the desired 

accuracy. Then solutions were generated as 𝑐 varies along the sequence of solutions. 

This was done for values of 𝑚 = −5, −4, … ,5 and 𝑠 = −3, … ,3,. Then the 

eigenvalues  𝑠𝐴𝑙𝑚 for the terms 𝐿 = ℓ − max(|𝑚|, |𝑠|) = 0, … ,6 were saved. Equation 

(3.1) is an approximation for  𝑠𝐴𝑙𝑚 for  𝑠 = 0 and large values of |𝑐|. The 𝑠 = 0 data 

were used to confirm the validity of this method, and the remaining 𝑠 values were used to 

fit for this function’s dependence upon the spin-weight of the SWSHs. 
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5. Results 

Figures 1 and 2 shows the behavior of the real and imaginary contributions to the 

separation constant  𝑠𝐴𝑙𝑚(𝑐) for the representative case of 𝑚 = 5, 𝑠 = 2, vs. values of 

𝑐 = 0 to 𝑐 = −20𝑖. 

 

Figure 1: Plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=5, s=2 from ic=0 to 20, and for L=0,...,6. 
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Figure 2: Plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=5, s=2 from ic=0 to 20, and for L=0,...,6. 

All of the other sets of sequences for different values of 𝑚 and 𝑠 are similar, except in the 

12 cases of 𝑚 = ±2, 𝑠 = ±2, ±3, and 𝑚 = ±3, 𝑠 = ±3. These will be discussed later. 

Also, for several of the imaginary plots, the imaginary contribution is simply zero. 

Figures 1 and 2 do not show the asymptotic behavior of the  𝑠𝐴𝑙𝑚(𝑐). For this, we need to 

consider large values of |𝑐|. Figures 3 and 4 show the log-log plot of the same data as in 

Figures 1 and 2, but to much larger values of |𝑐|. 
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Figure 3: Log-log Plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=5, s=2. The domain where 

Eq.(3.1) becomes applicable is |𝑐| ≳ 100. 

 

Figure 4: : Log-log Plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=5, s=2. The domain where 

Eq.(3.1) becomes applicable is |𝑐| ≳ 100. 
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The real and imaginary contributions were fit separately. As can be seen in Figure 3, for 

the case of 𝑚 = 5, 𝑠 = 2 the behavior of the eigenvalues change around |𝑐| ≳ 102. It is 

in this domain where Eq. (3.1) becomes applicable. 

In order to fit for this data, we used a function of the form 

(5.1) 

 𝑠𝐴𝑙𝑚 = 𝐵1|𝑐| + 𝐵2 + 𝐵3

1

|𝑐|
+ 𝐵4

1

|𝑐|2
+ 𝐵5

1

|𝑐|3
, 

where the 𝐵𝑖 are the fitting coefficients. The data was then used to perform a non-linear 

least-square fit for each term. When fitting for any particular term, the relevant fits for 𝐵𝑖 

were calculated for each value of m, 𝑠, and 𝐿. The first term fitted was the leading order 

term, 𝐵1. From equation (3.1), it is known that for the 𝑠 = 0 case, the expected 

coefficient is 𝐵1 = 2𝐿 + 1. Working under the assumption that this fit should be similar 

to the 𝑠 = 0 case, the real part of the 𝐵1 terms were then fit with the equation: 

 (5.2) 

𝐵1 = 𝐴1𝐿 + 𝐴2. 

In order to confirm agreement between the generated data and the analytic 

approximation, this fit was checked for all 𝑠 = 0 cases. For all cases, it was found that 

𝐴1 = 2 and 𝐴2 = 1, which agrees with Eq.(3.1). These coefficients were then also 

checked for varying values of 𝑠. 

For example, looking at the 𝑚 = 5 case, the leading order coefficient, 𝐵1, was 

pulled out for each value of 𝐿 and 𝑠. Next, all coefficients were grouped by their value of 

𝑠. These coefficients were then again fitted for the terms 𝐴1, and 𝐴2 as they depend upon 

𝐿 for each 𝑠 trajectory. If there is no 𝑠 dependence in the function, then one would expect 
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to obtain the same linear 𝐿 dependence seen in Eq. (2.1). The linear term in 𝐿, 𝐴1, is 

shown in Table 1. 

s Fitted Term Remainder Fit Error 

-3 2.00 6.18E-10 3.13E-10 

-2 2.00 -5.77E-11 4.57E-11 

-1 2.00 -1.35E-10 3.69E-11 

0 2.00 -8.82E-12 1.80E-12 

1 2.00 -1.35E-10 3.70E-11 

2 2.00 -6.62E-11 5.27E-11 

3 2.00 7.02E-10 3.52E-11 

Table 1: Table of Re(𝐴1) for m=5. 

Here, the remainder term is what is left when we take the difference of the fitted term 

with the putative value; two in this case. So, as can be seen, each value of 𝑠 produced a fit 

for the 𝐿 term as predicted in equation (2.1), out to an error that can be effectively called 

zero. Similarly, this was done for the constant term, 𝐴2 in Table 2. 

s Fitted Term Remainder Fit Error 

-3 1.00 2.24E-09 9.47E-10 

-2 1.00 2.64E-10 1.38E-10 

-1 1.00 1.71E-10 1.12E-10 

0 1.00 7.68E-12 5.46E-12 

1 1.00 1.72E-10 1.12E-10 

2 1.00 3.04E-10 1.59E-10 

3 1.00 2.52E-09 1.07E-09 

Table 2: Table of Re(𝐴2) for m=5. 

Similarly, the imaginary part of 𝐵1 was extracted and fit to a linear function in 𝐿. 

Looking at these coefficients, Table 3 and 4 shows the least-square fits for the imaginary 

components of 𝐴1 and 𝐴2 respectively. 

 

 

 



  

14 
 

s Fitted Term Fit Error 

-3 -2.91E-09 3.73E-10 

-2 -2.42E-10 3.03E-11 

-1 -5.95E-11 7.45E-12 

0 0.00 0.00 

1 -5.95E-11 7.45E-12 

2 -2.78E-10 3.49E-11 

3 -3.28E-09 4.21E-10 

Table 3: Table of Im(𝐴1) for m=5.. 

s Fitted Term Fit Error 

-3 3.47E-09 1.13E-09 

-2 2.46E-10 9.19E-11 

-1 5.48E-11 2.26E-11 

0 0.00 0.00 

1 5.48E-11 2.26E-11 

2 2.83E-10 1.06E-10 

3 3.92E-09 1.28E-09 

Table 4: Table of Im(𝐴2) for m=5. 

Similar values were retrieved for all values of 𝑚 = −5, … ,5, all of which were consistent 

with these values for the 𝑚 = 5 case. The 𝑠 = 0 term is zero, since the eigenvalues are 

purely real in the 𝑠 = 0 case. Since it was observed that there was no 𝑠 dependence for 

any of these leading order terms, it is concluded from the data that there is no 𝑠 

dependence in the leading order term, aside from the dependence of 𝐿 upon 𝑠. So, to a 

high degree of confidence, it can be concluded that this term remains the same as seen in 

Eq.(3.1). 

Once the lack of 𝑠 dependence was confirmed for 𝐵1, this term could be replaced 

in Eq (5.1) to get: 

(5.3) 

 𝑠𝐴𝑙𝑚 = (2𝐿 + 1)|𝑐| + 𝐵2 + 𝐵3

1

|𝑐|
+ 𝐵4

1

|𝑐|2
+ 𝐵5

1

|𝑐|3
. 
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This new fitting function was then used to extract the behavior of 𝐵2. For this term, we 

first verified that the 𝑠 = 0 case was the same as that predicted for the scalar spheroidal 

harmonics, 𝐵2 = − (
1

2
𝐿2 +

1

2
𝐿 +

3

4
− 𝑚2). This, as in the leading-order term case, was 

shown to hold true for all eleven values of 𝑚 generated. 

Similarly to the process for the first term, the second order term was then fitted 

for all values of 𝑠 and 𝐿 for a particular value of 𝑚 using the fitting function: 

(5.4) 

𝐵2 = −(𝐴3𝐿2 + 𝐴4𝐿 + 𝐴5). 

After the fits, the values of 𝐴3, 𝐴4, and 𝐴5 were extracted and fitted for 

dependence upon 𝑠. It was observed that 𝐴3 and 𝐴4 both had no dependency on 𝑠; 

however, the constant term, given by 𝐴5 =
3

4
− 𝑚2 in the 𝑠 = 0 case, varied as 𝑠 was 

changed. For example, looking at the 𝑚 = 1 case, the 𝐴5 dependence on 𝑠 is displayed in 

Table 5. 

s Fitted Term Remainder Fit Error 

-3 -12.25 -6.99E-10 9.853E-10 

-2 -6.25 -7.15E-11 1.705E-10 

-1 -2.25 2.78E-11 2.394E-10 

0 -0.25 -3.02E-10 2.507E-10 

1 -0.25 2.84E-11 2.394E-10 

2 -2.25 -6.93E-11 1.402E-10 

3 -6.25 -6.99E-10 9.846E-10 

Table 5: Table of  Re(𝐴5), showing the s dependence. 

This function demonstrated clear quadratic behavior, so when fitted with a 

quadratic function, we found that 𝐴5 =
3

4
− 𝑚2 + 𝑠 − 𝑠2. These fits come with an error 

of 2.459 ∙ 10−11 for the 𝑠2 term, and 4.259 ∙ 10−11 for the 𝑠 term. Fits for all other 

values of 𝑚 returned coefficients with similar errors for this correction. In the imaginary 
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case, similarly to the case of 𝐵1, all imaginary terms were zero for constant order with 

low error. This means that the overall term is: 

(5.5) 

𝐵2 = − (
1

2
𝐿2 +

1

2
𝐿 +

3

4
− 𝑚2 + 𝑠 − 𝑠2). 

 This term was then added to the fit model to give the equation: 

 (5.6) 

 𝑠𝐴𝑙𝑚 = (2𝐿 + 1)|𝑐| − (
1

2
𝐿2 +

1

2
𝐿 +

3

4
− 𝑚2 + 𝑠 − 𝑠2) + 𝐵3

1

|𝑐|
+ 𝐵4

1

|𝑐|2
+ 𝐵5

1

|𝑐|3
, 

and fits for the third order term, 𝐵3, were generated. For this term, in the 𝑠 = 0 case, the 

behavior is expected to go as −(2𝐿 + 1) (
1

16
𝐿2 +

1

16
𝐿 +

3

16
−

1

2
𝑚2) = −[2𝐿3 + 3𝐿2 +

𝐿(7 − 16𝑚2) + 3 − 8𝑚2]/16, and this relation was confirmed to hold for the data 

generated.  

 Due to the length of the 𝑠 = ±3 terms, which have not been calculated to as large 

values of 𝑐 as 𝑠 = −2, … ,2, they were not resolved to high enough accuracy to make 

significant contributions out to the 𝐵3 term. So using values of 𝑠 = −2, … ,2 and in the 

case of 𝑚 = 0, the coefficients 𝐵3 are shown in Table 6. 

s L Fit Parameter Fit Error 

-2 0 -61.00 6.266E-07 

-2 1 -177.00 8.234E-06 

-2 2 -275.00 1.824E-05 

-2 3 -343.00 1.872E-05 

-2 4 -369.00 8.852E-06 

-2 5 -341.01 8.876E-05 

-1 0 -13.00 5.188E-08 

-1 1 -33.00 7.887E-08 

-1 2 -35.00 1.188E-06 

-1 3 -7.00 6.111E-06 
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-1 4 63.00 1.732E-05 

-1 5 187.00 3.641E-05 

0 0 3.00 1.280E-09 

0 1 15.00 1.490E-08 

0 2 45.00 9.023E-08 

0 3 105.00 3.757E-07 

0 4 207.00 1.225E-06 

0 5 363.00 3.361E-06 

1 0 -13.00 5.723E-08 

1 1 -33.00 8.758E-08 

1 2 -35.00 1.308E-06 

1 3 -7.00 6.744E-06 

1 4 63.00 1.914E-05 

1 5 187.00 4.028E-05 

2 0 -61.00 6.481E-07 

2 1 -177.00 8.528E-06 

2 2 -275.00 1.891E-05 

2 3 -343.00 1.944E-05 

2 4 -369.00 9.058E-06 

2 5 -341.01 9.179E-05 

Table 6: Fits for 𝐵3 for m=4 and various values of s and L. 

Since the 𝑠 = 0 term went as a cubic in 𝐿, the extracted values for 𝐵3 were fit for 

a third-degree polynomial. It was found that the 𝐿3 and 𝐿2 terms remained unchanged. 

For the linear term, the fits all revealed the presence of the term −2𝐿𝑠2 = −
32𝐿𝑠2

16
. This 

coefficient came with an error of 1.64 ∙ 10−7.  This makes the equation for 𝐵3: 

(5.7) 

𝐵3 = −
[2𝐿3 + 3𝐿2 + 𝐿(7 − 16𝑚2 − 32𝑠2) + 3 − 8𝑚2 + 𝑓(𝑠, 𝑚)]

16
. 

 After adding in this behavior, the values of the function 𝑓(𝑠, 𝑚) were extracted. 

Table 7 shows the behavior for 𝑚 = 4. 
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s L Fit Parameter Remainder Fit Error 

-2 0 -64.00 -1.873E-05 9.055E-08 

-2 1 -64.00 2.292E-05 3.803E-07 

-2 2 -64.00 9.919E-05 5.593E-07 

-2 3 -64.00 1.946E-04 8.202E-07 

-2 4 -64.00 2.798E-04 8.758E-07 

-2 5 -64.00 3.269E-04 1.512E-06 

-1 0 -16.00 -2.300E-06 9.421E-08 

-1 1 -16.00 1.057E-05 4.043E-07 

-1 2 -16.00 2.578E-05 5.452E-07 

-1 3 -16.00 3.446E-05 7.795E-07 

-1 4 -16.00 1.542E-05 8.601E-07 

-1 5 -16.00 -6.047E-05 1.440E-06 

0 0 1.147E-06 3.129E-06 3.650E-07 

0 1 6.397E-06 9.963E-06 1.421E-06 

0 2 6.570E-06 2.184E-05 2.105E-06 

0 3 1.001E-05 2.412E-05 3.070E-06 

0 4 1.109E-05 1.540E-05 3.247E-06 

0 5 1.032E-05 2.476E-05 5.422E-06 

1 0 -16.00 -1.786E-06 8.462E-08 

1 1 -16.00 9.387E-06 3.563E-07 

1 2 -16.00 2.538E-05 4.521E-07 

1 3 -16.00 3.308E-05 7.548E-07 

1 4 -16.00 1.548E-05 8.178E-07 

1 5 -16.00 -5.872E-05 1.178E-06 

2 0 -64.00 -1.718E-05 9.178E-08 

2 1 -64.00 2.083E-05 3.716E-07 

2 2 -64.00 9.078E-05 5.470E-07 

2 3 -64.00 1.767E-04 7.520E-07 

2 4 -64.00 2.549E-04 8.504E-07 

2 5 -64.00 2.977E-04 1.418E-06 

Table 7: Fits for 𝑓(𝑠, 𝑚) for m=4 and various values of s and L. 

This function clearly behaves as 𝑓(𝑠, 𝑚) = −16𝑠2, which was confirmed for all values 

of 𝑚. This brings the real component of the equation to: 
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 (5.8) 

𝐵3 = −
[2𝐿3 + 3𝐿2 + 𝐿(7 − 16𝑚2 − 32𝑠2) + 3 − 8𝑚2 − 16𝑠2]

16
 

= −
(2𝐿 + 1)[𝐿(𝐿 + 1) + 3 − 8𝑚2 − 16𝑠2]

16
.                        

A similar fit for the imaginary term was done. 𝐵3 for 𝑚 = 5 is shown in Table 8. 

s L Fit Parameter Remainder Fit Error 

-2 0 640 -2.03E-05 1.198E-07 

-2 1 640 -5.40E-05 3.216E-07 

-2 2 640 -6.50E-05 3.891E-07 

-2 3 640 -3.71E-05 2.267E-07 

-2 4 640 4.58E-05 2.638E-07 

-2 5 640 2.00E-04 1.180E-06 

-1 0 160 -4.06E-06 9.412E-08 

-1 1 160 -1.04E-05 1.195E-07 

-1 2 160 -1.10E-05 6.622E-08 

-1 3 160 -2.09E-06 1.400E-08 

-1 4 160 2.05E-05 1.200E-07 

-1 5 160 6.07E-05 3.621E-07 

0 0 0.00 0.00 0.00 

0 1 0.00 0.00 0.00 

0 2 0.00 0.00 0.00 

0 3 0.00 0.00 0.00 

0 4 0.00 0.00 0.00 

0 5 0.00 0.00 0.00 

1 0 160 -4.06E-06 9.412E-08 

1 1 160 -1.04E-05 1.195E-07 

1 2 160 -1.10E-05 6.622E-08 

1 3 160 -2.09E-06 1.400E-08 

1 4 160 2.05E-05 1.120E-07 

1 5 160 6.07E-05 3.621E-07 

2 0 640 -2.25E-05 1.329E-07 

2 1 640 -6.00E-05 3.569E-07 

2 2 640 -7.22E-05 4.322E-07 

2 3 640 -4.13E-05 2.529E-07 

2 4 640 5.07E-05 2.916E-07 

2 5 640 2.22E-04 1.306E-06 

Table 8: Fits for Im(𝐵3). 
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As can be seen in the data, there was no 𝐿 dependence in Im(𝐵3), but clear 𝑠 

dependence. This particular term goes as 160i𝑠2 with an error of 2.620 ∙ 10−5. When 

looking at all fits for varying values of 𝑚, it is seen that this coefficient goes as 32𝑖𝑚𝑠2. 

Because the fits were done along the negative imaginary axis of 𝑐, this brings the total 

equation for the imaginary components of the eigenvalue this far to: 

(5.9) 

Im(𝑠𝐴𝑙𝑚) =
32𝑖𝑚𝑠2

16|𝑐|
=

2𝑖𝑚𝑠2

|𝑐|
=

2𝑚𝑠2

𝑐
. 

In this form, the contribution to 𝐵3 is consistent with the fundamental symmetry of 

the separation constant  𝑠𝐴𝑙𝑚
∗ (𝑐) =  𝑠𝐴𝑙𝑚(𝑐∗). 

6. Irregularities 

While fitting these curves, large errors occurred for 𝑚 = ± 2. For example, in the 

case of the leading order term, we get errors in both values of 𝑚 for the values of 𝑠 = ±2 

and ±3. In the case of 𝑚 = 2, Table 9 shows the behavior of the fits for 𝐴1. 

s Fitted Term Fit Error 

-3 132.80 4.970E+02 

-2 -520.25 6.109E+02 

-1 2.00 1.297E-11 

0 2.00 3.127E-13 

1 2.00 1.183E-11 

2 -524.27 6.156E+02 

3 132.493 5.035E+02 

Table 9: Fits for Re(𝐴1) of m=2. 

Table 9 is fitting the same terms as seen in Table 1, but for the anomalous case with 𝑚 =

2. Notice that the fits remain unchanged for 𝑠 = −1, 0, and 1. This is seen again in the 

fits for 𝐴2 as shown in Table 10. 
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s Fitted Term Fit Error 

-3 437.99 1.505E+03 

-2 2319.88 1.850E+03 

-1 1.00 3.928E-11 

0 1.00 9.468E-13 

1 1.00 3.582E-11 

2 2337.77 1.864E+03 

3 443.64 1.524E+03 

Table 10: Fits for Re(𝐴2) of m=2. 

This table should compare directly to Table 2. Again, we see very large error for 𝑠 =

±2, ±3 in this term. It is then evident that there is no linear dependence agreement 

between various 𝐿 values for 𝑚 = 2, 𝑠 = ±2, ±3. Similar errors were found for the 𝑚 =

±3, 𝑠 = ±3 coefficients as well. Figure 5 shows the real contribution of the 𝑚 = 2, 𝑠 =

2 case. 

 

Figure 5: Plot of different L trajectories for m=2, s=2 data. 
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For reference, Figure 5 should compare directly with the 𝑚 = 5, 𝑠 = 2 case shown in 

Figure 1. As can be seen here, there is a deflection-like event going on around 𝑐 = −3𝑖 

between the 𝐿 = 0 and 𝐿 = 1 lines. There is also an irregularity for the 𝐿 = 1 line. In 

order to better understand the type of behavior happening here Figure 5 shows a 

magnified view near the deflection. 

 

Figure 6: Zoom in of Figure 5 at the deflection-like event occurring between L=0 and 

L=1. 

It can be seen here that there is no intersection of the 𝐿 = 0 and 𝐿 = 1 lines, and 

that there is no jump occurring between these two lines on the graph. Intersections with 

other lines can be observed as in the intersection between the 𝐿 = 1 and 𝐿 = 2 lines as 

seen in Figure 7. 
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Figure 7 Zoom in of Figure 5 at the intersecting occurring between L=1 and L=2. 

It can be seen that there is no deflection; rather, the 𝐿 = 1 and 𝐿 = 2 lines cross. Figure 7 

is similar to all other intersections of the 𝐿 = 1 line with lines 𝐿 = 3, … ,6 in this data set. 

Figures 5-7 also illustrate well the anomalous behavior that occurs for 𝑚 = ±2, 𝑠 = ±2, 

where large errors are being returned in the data set.  

Exploring this behavior further, in the cases of 𝑚 = ±2, 𝑠 = ±3, we get similarly 

complicated plots. Particularly in the case of 𝑚 = 2, 𝑠 = 3, Figure 8 shows Re(𝑠𝐴𝑙𝑚). 
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Figure 8: Plot of different 𝐿 trajectories for m=2, s=3 data. 

Figure 8 is characteristic of the behavior for the other values of m= ±2,𝑠 = ±3. 

Lastly, this anomalous behavior can be seen again for 𝑚 = ±3, 𝑠 = ±3. Figure 9 shows 

the case of 𝑚 = 3, 𝑠 = 3. 
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Figure 9: Plot of different 𝐿 trajectories for m=2, s=3 data. 

Again, this graph is representative of the other cases for 𝑚 = ±3, 𝑠 = ±3. We have not 

yet fully investigated the cause of this behavior. 

7. Conclusion 

The results of the fits yield a corrected form of equation (2.1): 

(7.1) 

 𝑠𝐴𝑙𝑚 = |𝑐|(2𝐿 + 1) − (
1

2
𝐿2 +

1

2
𝐿 +

3

4
− 𝑚2 + 𝑠 − 𝑠2)

−
(2𝐿 + 1)[𝐿(𝐿 + 1) + 3 − 8𝑚2 − 16𝑠2]

16|𝑐|
−

2𝑚𝑠2

𝑐
+ 𝜗 (

1

|𝑐|2
), 

It was also shown that there is a clear anomalous, yet correct, behavior for the cases of 

𝑚 = ±2, 𝑠 = ±2, ±3 and 𝑚 = ±3, 𝑠 = ±3. In these cases, a particular value of 𝐿 is the 

set of eigenvalues exhibits the behavior which makes these fits fail. This may be one of 
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the reasons why no one has been able to approximate an analytic solution to resolving 

these eigenvalues. In the future, it will be necessary to separate out the anomalous 

sequences, and fit them separately. We will also want to check that the non-anomalous 

values of 𝐿 follow the fit for Eq. (6.1). We would also like to extend these fits to include 

the 𝐵4 term and add it to Eq. (6.1). 
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8.  Appendix  

Here is a list of all real and imaginary Log-Log plots grouped by value of 𝑚 and 𝑠 for all 

zero and positive values of 𝑚. Since the eigenvalue is purely real when 𝑠 = 0 and 𝑚 = 0, 

imaginary 𝑠 = 0 and 𝑚 = 0 plots are excluded from this list. 

𝑚 = 0 

 

Appendix 1: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=0, s=-3 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 2: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=0, s=-2 from ic=0 to 20, and 

for L=0,...,6 

 

Appendix 3: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=0, s=-1 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 4: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=0, s=0 from ic=0 to 20, and for 

L=0,...,6. 

 

Appendix 5: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=0, s=1 from ic=0 to 20, and for 

L=0,...,6. 
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Appendix 6: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=0, s=2 from ic=0 to 20, and for 

L=0,...,6. 

 

Appendix 7: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=0, s=3 from ic=0 to 20, and for 

L=0,...,6. 
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m = 1 

 

Appendix 8: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=1, s=-3 from ic=0 to 20, and 

for L=0,...,6.

 

Appendix 9: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=1, s=-3 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 10: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=1, s=-2 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 11: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=1, s=-2 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 12: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=1, s=-1 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 13: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=1, s=-1 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 14: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=1, s=0 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 15: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=1, s=1 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 16: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=1, s=1 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 17: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=1, s=2 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 18: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=1, s=2 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 19: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=1, s=3 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 20: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=1, s=3 from ic=0 to 20, and 

for L=0,...,6. 

𝑚 = 2 

 

Appendix 21: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=2, s=-3 from ic=0 to 20, and 

for L=0,...,6. 



  

39 
 

 

Appendix 22: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=2, s=-3 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 23: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=2, s=-2 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 24: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=2, s=-2 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 25: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=2, s=-1 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 26: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=2, s=-1 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 27: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=2, s=0 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 28: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=2, s=1 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 29: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=2, s=1 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 30: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=2, s=2 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 31: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=2, s=2 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 32: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=2, s=3 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 33: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=2, s=3 from ic=0 to 20, and 

for L=0,...,6. 
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𝑚 = 3 

 

Appendix 34: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=3, s=-3 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 35: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=3, s=-3 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 36: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=3, s=-2 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 37: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=3, s=-2 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 38: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=3, s=-1 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 39: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=3, s=-1 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 40: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=3, s=0 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 41: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=3, s=1 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 42: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=3, s=1 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 43: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=3, s=2 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 44: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=3, s=2 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 45: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=3, s=3 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 46: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=3, s=3 from ic=0 to 20, and 

for L=0,...,6. 

𝑚 = 4 

 

Appendix 47: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=4, s=-3 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 48: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=4, s=-3 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 49: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=4, s=-2 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 50: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=4, s=-2 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 51: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=4, s=-1 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 52: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=4, s=-1 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 53: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=4, s=0 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 54: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=4, s=1 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 55: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=4, s=1 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 56: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=4, s=2 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 57: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=4, s=2 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 58: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=4, s=3 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 59: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=4, s=3 from ic=0 to 20, and 

for L=0,...,6. 
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𝑚 = 5 

 

Appendix 60: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=5, s=-3 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 61: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=5, s=-3 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 62: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=5, s=-2 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 63: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=5, s=-2 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 64: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=5, s=-1 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 65: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=5, s=-1 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 66: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=5, s=0 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 67: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=5, s=1 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 68: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=5, s=1 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 69: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=5, s=2 from ic=0 to 20, and 

for L=0,...,6. 



  

63 
 

 

Appendix 70: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=5, s=2 from ic=0 to 20, and 

for L=0,...,6. 

 

Appendix 71: Log-log plot of Im(𝑠𝐴𝑙𝑚) for SWSHs with m=5, s=3 from ic=0 to 20, and 

for L=0,...,6. 
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Appendix 72: Log-log plot of Re(𝑠𝐴𝑙𝑚) for SWSHs with m=5, s=3 from ic=0 to 20, and 

for L=0,...,6. 


